• Title/Summary/Keyword: 컴퓨터 이러닝

Search Result 976, Processing Time 0.024 seconds

A Design and Implementation of Web-based Test System using Computer-adaptive Test Algorithm (컴퓨터 적응형 알고리즘을 이용한 웹기반 시험 시스템 설계 및 구축)

  • Cho, Sung Ho
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.6
    • /
    • pp.69-76
    • /
    • 2004
  • E-learning is the application of e-business technology and services to teaching and learning. It use of new multimedia technologies and Internet to improved the quality of learning by facilitating access to remote resources and services. In this paper, we show a web-based test system, which is carefully designed and implemented based on the real TOEFL CBT. The system consists of a contents delivery mechanism, computer-adaptive test algorithm, and review engine. In this papepr, we describe design and implementing issues of web-based test systems.

  • PDF

Development of PCB board vision inspection system using image recognition based on deep learning (딥러닝 영상인식을 이용한 PCB 기판 비전 검사 시스템 개발)

  • Chang-hoon Lee;Min-sung Lee;Jeong-min Sim;Dong-won Kang;Tae-jin Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.289-290
    • /
    • 2024
  • PCB(Printed circuit board)생산시에 중요한 역할을 담당하는 비전검사 시스템의 성능은 지속적으로 발전해왔다. 기존 머신 비전 검사 시스템은 이미지가 불규칙하고 비정형일 경우 해석이 어렵고 전문가의 경험에 의존한다. 그리고 비전검사 시스템 개발 당시의 기준과 다른 불량이 발생한다면 검출이 불가능 하거나 정확도가 낮게 나온다. 본 논문에서는 이를 개선하고자 딥러닝 영상인식을 이용한 PCB 기판 비전 검사 시스템을 구현하였다. 딥러닝 영상인식 알고리즘은 YOLOv4를 이용하고, 워핑(warping)과 시킨 PCB 이미지를 학습하여 비전검사 시스템을 구성하였다. 딥러닝 영상인식 기술의 처리 속도를 보완하고자 QR코드로 PCB 기판 종류를 인식하고, 해당 PCB 부품의 미삽은 정답 이미지 바운딩 박스 좌표와 비교하여 불량품을 발견하면 표시해준다. 기판의 부품 인식을 위해 기판 데이터는 직접 촬영하여 수집하였다. 이를 활용하여 PCB 생산 공정에서 비전검사 시스템의 성능이 향상되었고,, 다양한 PCB를 생산에 신속하게 대응할 수 있다.

  • PDF

Learning Achievement Prediction Model based on Deep Learning (딥러닝 기반의 학습 성취 예측 모델)

  • Lee, Myung-Suk;Pak, Ju-Geon;Lee, Joo-Hwa
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.245-247
    • /
    • 2021
  • 최근 코로나 19로 인하여 온라인 강의가 증가하고 있으며 이를 활용한 학습 분석에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 학습 분석 중 학습 결과에 영향을 미칠 수 있는 학습 활동 데이터를 수집하여 학습 결과를 예측하는 모델을 설계하고자 한다. 예측 모델은 기계학습을 이용하며 이전 학기의 학습 결과 데이터를 학습시켜 학습 결과에 영향을 미치는 학습 활동 데이터를 도출한다. 도출된 데이터를 이용하여 차후 학습자의 학습 결과를 예측한다. 학습 결과를 예측하기 위한 모델로 딥러닝의 DNN을 활용한다. 향후 연구로는 예측한 결과를 바탕으로 학습자의 학습 동기 부여와 학습 지도 방향을 정하는 것이다.

  • PDF

Vocabulary Improvement Class Design Linking Elementary School AI Education and Writing Education using 'Machine Learning for Kids' (머신러닝 포키즈를 이용한 초등 AI 교육과 글쓰기 교육을 연계한 어휘력 향상 수업설계)

  • Kim, Ji-Song;Lee, Myung-Suk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.719-722
    • /
    • 2021
  • 최근 인공지능의 새로운 기술들이 하루가 다르게 발전하고 있다. 이에 본 연구에서는 인공지능 교육과 글쓰기 교육을 연계하여 초등학생들의 어휘력 향상을 위한 수업을 설계하고자 한다. 그 방법으로는 본 수업에 앞서 어휘 10문제를 테스트하여 실험에 참가하기 전의 어휘력을 점검한다. 그 후 머신러닝 포키즈를 이용하여 여러 감정에 해당되는 단어들을 다양하게 훈련하도록 하였고, 그 후 관련된 어휘 10문제를 다시 테스트 하였다. 실험 결과 실험에 참가하기 전에는 100점 만점에 58.8점으로 나왔으나 훈련 후의 결과는 평균 68점으로 모든 학생의 성적이 좋아지는 결과를 얻을 수 있었다. 어휘력 문항수가 적은 점과 10명의 실험참가자로 일반화할 수 없는 한계가 있다. 향후 초등교재 한권을 선정하여 어휘를 모두 분석한 후 가장 많이 등장하는 어휘를 골라내어 테스트하여 좀 더 통계적으로 의미 있는 분석을 하고자 한다.

  • PDF

A Study on Hangeul Mobile Handwriting Practice and Analyzing Application Development Based on Deep Learning (딥러닝 기반 한글 전자 필기 연습 및 분석 앱 개발에 대한 연구)

  • Ko, Ju-Eun;Oh, Jee-Eun;Min, Kyoung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.322-325
    • /
    • 2022
  • 전 세계적으로 코로나바이러스가 유행함에 따라 비대면 활동을 비롯하여 전자 필기 이용 및 상품 소비가 증가하였다. 전자 필기에 대한 수요가 늘어남에 따라 전자 필기 글씨체 교정에 대한 관심 또한 증가하는 추세이다. 본 논문에서는 전자 필기 이미지에서 음절과 음소 영역을 추출하여 글씨를 분석하고, 이를 사용하여 사용자의 손글씨에서 개선점을 찾아낼 수 있는 딥러닝 알고리즘을 제안한다. 제안한 알고리즘을 통해 사용자가 원하는 전자 필기 글씨체를 효과적으로 습득할 수 있도록 사용자 글씨에 대해 구체적인 피드백을 제공하는 딥러닝 기반 태블릿 PC 용 한글 전자 필기 연습 및 분석 앱에 대한 연구를 소개하였다.

Context-Aware Middleware Design for Emotion Feedback of E-Learning Learners (이러닝 학습자의 감정 피드백을 위한 상황인식 미들웨어 설계)

  • Kim, Jin-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.670-672
    • /
    • 2022
  • 이러닝 시스템을 유용하게 활용하려면 학습자의 감정을 인식하여 학습자에게 적절한 피드백을 주는 것이 무엇보다 중요하다. 이러닝 시스템의 학습효율을 높이기 위해서는 학습자의 감정을 인식하여 그에 적절한 피드백을 제공하는 것이 중요하다. 본 논문에서는 학습자에 대한 적절한 피드백을 제공하기 위해서 상황인식 컴퓨팅 기술을 바탕으로 학습자의 감정표현단어를 상황정보로 사용하여 감정을 인식할 수 있는 상황인식 미들웨어로서 EF-CAM을 제안한다. EF-CAM은 감정표현단어의 범주화기술을 기반으로 온톨로지를 구축하여 학습자의 감정을 인식한다. 이러닝 학습자의 감정을 인식하기 위해서 학습자의 감정표현 단어를 상황정보로 사용하고, 학습자의 감정에 영향을 미칠 수 있는 환경정보(온도, 습도, 날씨 등)를 추가하여 인식한다. 학습자의 감정을 표현하기 위해서 OWL 언어를 사용하여 온톨로지를 구축하였다.

Dynamic Launch Zone Algorithm Using Machine Learning (머신러닝을 활용한 동적발사영역 산출 알고리즘)

  • You, Eun-Kyung;Bae, Chan-Gyu;Kim, Hyeock-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.35-36
    • /
    • 2020
  • 본 연구는 TA-50 항공기 임무컴퓨터에서 JDAM을 가상으로 운용하는데 필요한 소프트웨어 개선 내용 중 가상 JDAM 무장 투하 구역 계산 방법을 제안한다. 이 연구에서 제안한 무장투하구역 알고리즘은 FA-50 JDAM DLZ에서 추출한 무장투하구역 입/출력값을 tensorflow를 사용하여 학습한 알고리즘이다. 이 연구를 통해 제안한 가상 JDAM DLZ 알고리즘을 사용할 경우 실제 무장을 장착하지 않은 항공기에서 가상으로 JDAM 무장 투하 구역 표시가 가능하고, 조종사는 가상의 JDAM DLZ를 참고하여 무장 투하 훈련을 수행할 수 있다.

  • PDF

Trandemark detection system using deep learning-based algorithms in a metaverse environment (메타버스 환경에서의 딥 러닝 기반 알고리즘을 활용한 상표권 탐지 시스템)

  • Ji-Eun Lee;Hyung-Su Lee;Yong-Tae Shin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.1-4
    • /
    • 2024
  • 코로나 19(Covide-19)이후 가상과 현실이 융·복합 되어 사회·경제·문학활동과 가치 창출이 가능한 메타버스가 차세대 핵심산업으로 부상하고 있다. 이에 자사 보유 기술, IP(Intellectual Property) 등을 활용하여 메타버스 플랫폼을 구축하고자 하는 기업들이 증가하여 지식재산권을 둔 법적 이슈들이 새롭게 나타나고 있다. 따라서 본 논문에서는 상표권 침해를 보호하기 위하여 딥 러닝 기반 객체 탐지모델인 YOLOv5 모델을 활용한 메타버스 환경에서의 상표권 탐지 시스템을 제안한다.

  • PDF

A Study on the Development of Smart Education Using Deep Learning Algorithm (딥러닝 알고리즘을 활용한 스마트교육의 발전방안 연구)

  • Kim, Ji-Yun;Lee, Tae-Wuk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.169-171
    • /
    • 2016
  • 본 논문에서는 최근 빅데이터 처리 방법으로 각광을 받고 있는 딥러닝 알고리즘을 스마트교육에 적용하는 방안을 제안한다. 디지털 교과서의 사용과 함께 교육 빅데이터가 발생하는 스마트교육의 특성 상 빅데이터를 효과적으로 처리하고 활용할 수 있는 방법이 필요하다. 따라서 그 방법으로 딥러닝을 적용하고, 이를 활용한 교육을 한다면 개별화 교육의 실현, 감성 교육에의 활용, 수업 개선에의 도움, 양질의 학습자료 선별 등의 효과를 거둘 수 있을 것이다.

  • PDF

Deep-Learning based PHM Embedded System Using Noise·Vibration (소음·진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템)

  • Lee, Se-Hoon;Sin, Bo-Bae;Kim, Ye-Ji;Kim, Ji-Seong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.9-10
    • /
    • 2017
  • 본 논문에서 소음, 진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템을 제안하였다. 제안된 시스템은 기계로부터 취득된 소리와 진동을 바탕으로 학습한 DNN모델을 통해 실시간으로 기계 고장을 진단한다. 딥러닝 기술을 사용하여 학습에 따라 적용대상이 변경될 수 있도록 함으로써 특정 기계에 종속적이지 않고 가변적으로 다양한 기계에 대해 고장 예지 및 건전성 관리를 제공하도록 설계하였으며, 이를 증명하기 위해 액추에이터를 환풍기로 설정하여 정상상태와 4가지 비정상상태의 5가지상태를 학습하여 실험한 결과 93%의 정확도를 얻었다.

  • PDF