• Title/Summary/Keyword: 컴퓨터 융합

Search Result 2,390, Processing Time 0.031 seconds

AiMind: SW·AI Convergence Education Platform for Fostering Digital Talent (AiMind: 디지털 인재 양성을 위한 SW·AI 융합 교육 플랫폼)

  • Se-Hoon Lee;Ki-Tea Kim;Jay Yun;Do-Hyung Kang;Young-Ho Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.387-388
    • /
    • 2023
  • 본 논문에서는 인공지능(AI) 체험부터 초중등, 대학 및 평생교육에서 필요한 광범위한 응용과 활용을 할 수 있는 라이브러리를 디지털북 형태로 지원하며, 블록과 텍스트 코딩의 장점을 취합해 입문자들이 쉽고 재미있게 SW·AI 융합 교육을 할 수 있는 플랫폼을 구현하였다. 플랫폼은 웹어셈블리 기반의 파이오다이드를 통해 웹 브라우저에서 파이썬 코딩을 가능하게 하고 복잡한 설치과정 없이 쉽게 이용이 가능하다. 다양한 LMS와 연동이 가능하도록 API를 제공하며, Drag & Fill 블록으로 입문자가 코딩에 겪는 어려움 중 하나인 많은 양의 함수와 파라미터 사용법의 어려움을 해소하였다. 플랫폼은 블록으로 코딩하여 문법의 어려움, 오탈자, 오류 등을 줄이는 동시에 블록에서 생성되는 파이썬 텍스트 코드로 입문자가 텍스트 코드에 익숙해질 수 있는 경험을 제공한다.

  • PDF

NIST 암호 표준화 공모전 동향

  • Kim, Hyeon-Jun;Park, Jae-Hun;Gwon, Hyeok-Dong;Seo, Hwa-Jeong
    • Review of KIISC
    • /
    • v.30 no.6
    • /
    • pp.117-123
    • /
    • 2020
  • NIST에서는 앞으로 다가올 사물인터넷 환경과 양자 컴퓨터 시대를 대비하기 위해 2019년부터 경량암호 표준화 공모전을 그리고 2017년부터 양자내성암호 표준화 공모전을 각각 진행해 오고 있다. 경량암호 표준화 공모전은 경량 블록암호 운영 모드를 통해 저전력 사물인터넷 환경 상에서 높은 가용성을 만족하는 암호 개발을 그리고 양자내성암호 표준화 공모전은 양자컴퓨터 상에서의 양자알고리즘으로부터 안전한 공개키 암호 개발을 각각 목표로 하고 있다. 본 고에서는 차세대 암호의 표준화에 큰 영향을 미치게 될 NIST 경량암호 그리고 양자내성암호 표준화 공모전 동향을 상세히 확인해 보도록 한다.

A Study of the construct Korean New Word Corpus and Metric of New Word Importance (한국어 신조어 말뭉치 구축 및 신조어 중요도 측정 방법에 대한 연구)

  • Kim, Hyunji;Jung, Sangkeun;Hwang, Taewook
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.14-19
    • /
    • 2020
  • 신조어는 자연어처리에 있어 대단히 중요하며, 시스템의 전체 성능에 직접적인 영향을 미친다. 일단위, 주단위로 신규 발생하는 어휘들에 대해, 자동으로 신규성 및 중요도가 측정되어 제공된다면, 자연어처리 연구 및 상용시스템 개발에 큰 도움이 될 것이다. 이를 위해, 본 연구는 한국어 말뭉치 KorNewVocab을 새로이 제시한다. 먼저, 신조어가 가져야 할 세부 중요 조건을 1)신규 어휘 2)인기 어휘 3)지속 사용 어휘로 정의하고, 이 조건을 만족하는 신조어 말뭉치를 2019.01~2019.08까지의 뉴스기사를 중심으로 신조어 412개와 4,532 문장으로 구성된 신조어 말뭉치를 구축하였다. 또한, 본 말뭉치의 구축에 활용된 반자동 신규어휘 검출 및 중요도 측정 방법에 대해 소개한다.

  • PDF

Semantic and Syntax Paraphrase Text Generation (유사구조 및 유사의미 문장 생성 방법)

  • Seo, Hyein;Jung, Sangkeun;Jung, Jeesu
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.162-166
    • /
    • 2020
  • 자연어 이해는 대화 인터페이스나 정보 추출 등에 활용되는 핵심 기술 중 하나이다. 최근 딥러닝을 활용한 데이터 기반 자연어 이해 연구가 많이 이루어지고 있으며, 이러한 연구에 있어서 데이터 확장은 매우 중요한 역할을 하게 된다. 본 연구는 자연어 이해영역에서의 말뭉치 혹은 데이터 확장에 있어서, 입력으로 주어진 문장과 문법구조 및 의미가 유사한 문장을 생성하는 새로운 방법을 제시한다. 이를 위해, 우리는 GPT를 이용하여 대량의 문장을 생성하고, 문장과 문장 사이의 문법구조 및 의미 거리 계산법을 제시하여, 이를 이용해 가장 유사하지만 새로운 문장을 생성하는 방법을 취한다. 한국어 말뭉치 Weather와 영어 말뭉치 Atis, Snips, M2M-Movie M2M-Reservation을 이용하여 제안방법이 효과적임을 확인하였다.

  • PDF

A Deep Reinforcement Learning Framework for Optimal Path Planning of Industrial Robotic Arm (산업용 로봇 팔 최적 경로 계획을 위한 심층강화학습 프레임워크)

  • Kwon, Junhyung;Cho, Deun-Sol;Kim, Won-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.75-76
    • /
    • 2022
  • 현재 산업용 로봇 팔의 경로 계획을 생성할 때, 로봇 팔 경로 계획은 로봇 엔지니어가 수동으로 로봇을 제어하며 최적 경로 계획을 탐색한다. 미래에 고객의 다양한 요구에 따라 공정을 유연하게 변경하는 대량 맞춤 시대에는 기존의 경로 계획 수립 방식은 부적합하다. 심층강화학습 프레임워크는 가상 환경에서 로봇 팔 경로 계획 수립을 학습해 새로운 공정으로 변경될 때, 최적 경로 계획을 자동으로 수립해 로봇 팔에 전달하여 빠르고 유연한 공정 변경을 지원한다. 본 논문에서는 심층강화학습 에이전트를 위한 학습 환경 구축과 인공지능 모델과 학습 환경의 연동을 중심으로, 로봇 팔 경로 계획 수립을 위한 심층강화학습 프레임워크 구조를 설계한다.

Utilizing Large Language Models for Non-trained Binary Sentiment Classification (거대 언어 모델(LLM)을 이용한 비훈련 이진 감정 분류)

  • Hyungjin Ahn;Taewook Hwang;Sangkeun Jung
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.66-71
    • /
    • 2023
  • ChatGPT가 등장한 이후 다양한 거대 언어 모델(Large Language Model, LLM)이 등장하였고, 이러한 LLM을 목적에 맞게 파인튜닝하여 사용할 수 있게 되었다. 하지만 LLM을 새로 학습하는 것은 물론이고, 단순 튜닝만 하더라도 일반인은 시도하기 어려울 정도의 많은 컴퓨팅 자원이 필요하다. 본 연구에서는 공개된 LLM을 별도의 학습 없이 사용하여 zero-shot 프롬프팅으로 이진 분류 태스크에 대한 성능을 확인하고자 했다. 학습이나 추가적인 튜닝 없이도 기존 선학습 언어 모델들에 준하는 이진 분류 성능을 확인할 수 있었고, 성능이 좋은 LLM의 경우 분류 실패율이 낮고 일관적인 성능을 보여 상당히 높은 활용성을 확인하였다.

  • PDF

A Study on Filter Pruning for Real-Time Object Detection in Embedded Board Environments (임베디드 보드 환경에서 실시간 객체 탐지를 위한 필터 프루닝 연구)

  • Jongwoong Seo;Hanse Ahn;Seungwook Son;Yongwha Chung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.536-539
    • /
    • 2023
  • 딥러닝 기술은 더 많은 분야와 과제에 적용되기 위해서 네트워크는 더 복잡하고 거대한 형태로 발전해왔다. YOLOv7-tiny과 같은 객체탐지 네트워크는 다양한 객체와 환경에서 활용하기 위해 COCO 데이터 세트를 대상으로 발전해왔다. 그러나 본 논문에서 적용할 모델은 임베디드 보드 환경에서 실시간으로 1개의 Class를 대상으로 객체를 탐지하는 네트워크 모델이 찾고자 프루닝을 적용하였다. 모델의 프루닝을 할 필터를 찾기 위해 본 논문에서는 클러스터링을 통한 필터 프루닝 방법을 제안한다. 본 논문의 제안 방법을 적용했을 때 기준 모델보다 정확도가 7.6% 감소하였으나, 파라미터가 1% 미만으로 남고, 속도는 2.1배 증가함을 확인하였다.

Improving Accuracy over Parameter through Channel Pruning based on Neural Architecture Search in Object Detection (물체 탐지에서 Neural Architecture Search 기반 Channel Pruning 을 통한 Parameter 수 대비 정확도 개선)

  • Jaehyeon Roh;Seunghyun Yu;Seungwook Son;Yongwha Chung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.512-513
    • /
    • 2023
  • CNN 기반 Deep Learning 분야에서 객체 탐지 정확도를 높이기 위해 모델의 많은 Parameter 가 사용된다. 많은 Parameter 를 사용하게 되면 최소 하드웨어 성능 요구치가 상승하고 처리속도도 감소한다는 문제가 있어, 최소한의 정확도 하락으로 Parameter 를 줄이기 위한 여러 Pruning 기법이 사용된다. 본 연구에서는 Neural Architecture Search(NAS) 기반 Channel Pruning 인 Artificial Bee Colony(ABC) 알고리즘을 사용하였고, 기존 NAS 기반 Channel Pruning 논문들이 Classification Task 에서만 실험한 것과 달리 Object Detection Task 에서도 NAS 기반 Channel Pruning 을 적용하여 기존 Uniform Pruning 과 비교할 때 파라미터 수 대비 정확도가 개선됨을 확인하였다.

Dataset Augmentation on Fallen Person Objects in a Autonomous Driving Tractor Environment (자율주행 트랙터 환경에서 쓰러진 사람에 대한 데이터 증강)

  • Hwapyeong Baek;Hanse Ahn;Heesung Chae;Yongwha Chung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.553-556
    • /
    • 2023
  • 데이터 증강은 데이터 불균형 문제를 해결하기 위해 일반화 성능을 향상시킨다. 이는 과적합 문제를 해결하고 정확도를 높이는 데 도움을 준다. 과적합을 해결하기 위해서 본 논문에서는 분할 마스크 라벨링을 자동화하여 효율성을 높이고, RoI를 활용한 분할 Copy-Paste 데이터 증강 기법을 제안한다. 본 논문의 제안 방법을 적용한 결과 YOLOv8 모델에서 기존의 분할, 박스 Copy-Paste 데이터 증강 기법과 비교해서 쓰러진 사람 객체에 대한 정확도가 10.2% 증가함으로써 제안한 방법이 일반화 성능을 높이는 데 효과가 있음을 확인하였다.