Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.479-480
/
2024
본 논문에서는 원자력 안전조치 용어를 미세조정(fine tuning) 알고리즘을 활용해 추가 학습한 공개 거대 언어모델(Large Language Model, LLM)이 안전조치 관련 질문에 대해 답변한 결과를 정성적으로 평가하였다. 평가 결과, 학습 데이터 범위 내 질문에 대해 학습 모델은 기반 모델 답변에 추가 학습 데이터를 활용한 낮은 수준의 추론을 수행한 답변을 출력하였다. 평가 결과를 통해 추가 학습 개선 방향을 도출하였으며 저비용 전문 분야 언어 모델 구축에 활용할 수 있을 것으로 보인다.
이 연구에서 엔트리 명령 블록을 이용하여 보편적 프로그래밍 언어를 개발하고 검증하였다. 그래서 이 연구를 통해 블록형 프로그래밍 언어의 접근 수월성을 이용하여 절차적 사고력 향상을 위한 아이디어를 제공하고자 하였다. 새로운 프로그래밍 언어를 만들어 알고리즘을 적용하여 함수화된 사칙연산 프로그램을 만들면서, 다양한 알고리즘을 적용하면 엔트리에서 제시하는 모든 명령 블록을 만들 수 있음을 증명하였다. 이 연구를 통해 1)프로그래밍 언어에 포함된 다양한 기능의 명령어들도 함수화되어 있음을 증명하고 재생산 가능함을 경험할 수 있는 아이디어를 제공하고, 2)초보 프로그래머들이 프로그래밍 언어 개발에 대한 흥미와 관심을 갖게 되는 방안을 제시하며, 3)알고리즘을 경험하면서 절차적 사고력을 향상시킬 수 있는 다른 방향의 SW 교수 학습 방법과, 4)프로그래밍 언어를 미시적으로 탐구하면서 SW 교육 관점을 다양화하는 방법을 제시하였다. 이 연구에서 제시한 방안으로 학생들이 절차적 사고력 향상과 프로그래밍 언어의 다양성 인식, 프로그램을 심층적으로 분석하는 태도 등의 SW 교육에 대한 긍정적 변화를 기대한다.
Proceedings of the Korean Society of Computer Information Conference
/
2016.07a
/
pp.183-184
/
2016
본 논문에서는 2015 개정 교육과정에서 강조하고 있는 SW 교육의 교육용 프로그래밍 언어(EPL)에 대한 현직 초등 교사들의 실태와 요구를 분석하였다. 현직 초등 교사들이 대부분 이수한 교대의 교육과정에는 교육용 프로그래밍 언어 교육에 관한 내용은 대다수 없는 것으로 파악되었다. 또한 현장에서 실시되고 있는 교육용 프로그래밍 언어에 관한 연수는 양적으로도 연수의 수가 부족할 뿐만 아니라 질적으로도 개선이 필요한 것으로 분석되었다. 교육용 프로그래밍 언어에 대한 현직 교사의 사례들에서도 교육용 프로그래밍 언어에 대한 교사교육에 관한 다양한 요구가 분석되었다. 이를 통하여 교육용 프로그래밍 언어에 대한 초등 교사교육의 필요성과 방향에 대하여 제언하였다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1022-1025
/
2013
소프트웨어 개발자는 예전과 같이 PC 나 서버에서만 동작하는 소프트웨어만 만들어야 하는 것이 아니고, 스마트폰, 스마트패드, 스마트 TV, 스마트워치 등 개발해야 하는 플랫폼의 종류가 기하급수적으로 늘고 있다. 그러나 비용문제, 과열된 스타트업 시장으로 인한 채용문제로, 개발 초기 시 클라이언트, 네트워크, 데이터베이스에 숙련된 개발자를 충분히 보유하고 시작하는 경우는 드물다. 본 논문은 HTML 서비스, 실시간 네트워킹, 데이터베이스 CRUD를 지원하는 초보자도 사용하기 쉬운 새로운 언어를 소개한다. 우리는 언어 요구사항, 언어 산출물의 정의를 통하여 언어의 설계 및 구현을 한다. 실제로 실시간 네트워크 서버를 우리의 언어로 제작한 사례 연구를 통하여 우리의 언어가 우수하고 개발자의 노력대비 결과가 좋음을 보인다. 추후 이 언어를 활용하여 게임, 채팅 어플리케이션, 실시간 모니터링 등 특정 도메인에 맞는 어플리케이션을 개발자가 쉽게 작성할 수 있을 것이다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.61-65
/
2023
최근, 대부분의 태스크가 초거대 언어 모델로 통합되고 있을 정도로 많은 관심 및 연구되고 있다. 초거대 언어 모델을 효과적으로 활용하기 위해서는 모델의 능력에 대한 분석이 선행되어야 하나, 한국어에 대한 분석 및 탐색은 상대적으로 부족하다. 본 논문에서는 한국어 맞춤법 교정 태스크를 통해 초거대 언어 모델의 능력을 탐색한다. 맞춤법 교정 태스크는 문장의 구조 및 문법을 이해하는 능력이 필요하며, 사용자의 만족도에 영향을 미칠 수 있는 중요한 태스크이다. 우리는 맞춤법 세부 유형에 따른 ChatGPT의 제로샷 및 퓨샷성능을 평가하여 초거대 언어 모델의 성능 분석을 수행한다. 실험 결과 제로샷의 경우 문장부호 오류의 성능이 가장 우수했으며, 수사 오류의 성능이 가장 낮았다. 또한, 예제를 더 많이 제공할수록 전체적인 모델의 성능이 향상되었으나, 제로샷의 경우보다 오류 유형 간의 성능 차이가 커지는 것을 관찰할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2012.06a
/
pp.131-133
/
2012
본 연구에서는 컴퓨터의 개념을 학부 신입생 교육과정에서 쉽게 이해할 수 있도록 ARM 명령어 집합의 부분 집합을 정의하고, 어셈블리 언어 코드를 입력받아 실행하는 가상 머신을 설계하고 구현하였다. 기존 교육 과정의 컴퓨터 구조 과목에서 다루는 어셈블리 언어는 실제의 머신을 기반으로 하기 때문에 개념을 학습하는데 있어서 불필요하게 복잡하다는 단점이 있다. 하지만 본 연구에서는 교육에 필요한 내용만을 포함한 가상 머신을 새롭게 정의함으로써 좀 더 우아한 방법으로 컴퓨터의 개념을 이해할 수 있도록 하였다. 특히 어셈블리 언어 학습을 통해서 컴퓨터 구조와 고급 언어 간의 상호작용을 이해하는데 도움이 될 수 있다. 제안한 가상 머신은 자바로 구현하였으며, 스캐너 및 파서를 구현하기 위해서 오픈소스 컴파일러-컴파일러 시스템을 사용하였다. 해당 가상 머신은 공과대학 학부 신입생을 위한 실습 프로그램으로 사용되었으며 컴퓨터 개념의 이해를 돕는데 유의미한 기여를 하였다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.485-490
/
2022
데이터 증강기법은 추가적인 데이터 구축 혹은 수집 행위 없이 원본 데이터셋의 양과 다양성을 증가시키는 방법이다. 데이터 증강기법은 규칙 기반부터 모델 기반 방법으로 발전하였으며, 최근에는 Masked Language Modeling (MLM)을 응용한 모델 기반 데이터 증강 연구가 활발히 진행되고 있다. 그러나 기존의 MLM 기반 데이터 증강 방법은 임의 대체 방식을 사용하여 문장 내 의미 변화 가능성이 큰 주요 토큰을 고려하지 않았으며 증강에 따른 레이블 교정방법이 제시되지 않았다는 한계점이 존재한다. 이러한 문제를 완화하기 위하여, 본 논문은 레이블을 고려할 수 있는 Re-labeling module이 추가된 MLM 기반 한국어 데이터 증강 방법론을 제안한다. 제안하는 방법론을 KLUE-STS 및 KLUE-NLI 평가셋을 활용하여 검증한 결과, 기존 MLM 방법론 대비 약 89% 적은 데이터 양으로도 baseline 성능을 1.22% 향상시킬 수 있었다. 또한 Gate Function 적용 여부 실험으로 제안 방법 Re-labeling module의 구조적 타당성을 검증하였다.
Jun Yeong Park;Jinyoung Yeo;Go-Eun Lee;Chang Hwan Choi;Sang-Il Choi
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.514-517
/
2023
본 연구는 인 컨택스트 러닝 (In-Context Learning)을 오디오-언어 작업에 적용하기 위한 멀티모달 (Multi-Modal) 딥러닝 모델을 다룬다. 해당 모델을 통해 학습 단계에서 오디오와 텍스트의 소통 가능한 형태의 표현 (Representation)을 학습하고 여러가지 오디오-텍스트 작업을 수행할 수 있는 멀티모달 딥러닝 모델을 개발하는 것이 본 연구의 목적이다. 모델은 오디오 인코더와 언어 인코더가 연결된 구조를 가지고 있으며, 언어 모델은 6.7B, 30B 의 파라미터 수를 가진 자동회귀 (Autoregressive) 대형 언어 모델 (Large Language Model)을 사용한다 오디오 인코더는 자기지도학습 (Self-Supervised Learning)을 기반으로 사전학습 된 오디오 특징 추출 모델이다. 언어모델이 상대적으로 대용량이기 언어모델의 파라미터를 고정하고 오디오 인코더의 파라미터만 업데이트하는 프로즌 (Frozen) 방법으로 학습한다. 학습을 위한 과제는 음성인식 (Automatic Speech Recognition)과 요약 (Abstractive Summarization) 이다. 학습을 마친 후 질의응답 (Question Answering) 작업으로 테스트를 진행했다. 그 결과, 정답 문장을 생성하기 위해서는 추가적인 학습이 필요한 것으로 보였으나, 음성인식으로 사전학습 한 모델의 경우 정답과 유사한 키워드를 사용하는 문법적으로 올바른 문장을 생성함을 확인했다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.482-485
/
2021
최근 지식 그래프를 확장하기 위해 많은 연구가 진행되고 있다. 지식 그래프를 확장하기 위해서는 relation을 기준으로 entity의 방향성을 고려하는 것이 매우 중요하다. 지식 그래프를 확장하기 위한 대표적인 연구인 관계 추출은 문장과 2개의 entity가 주어졌을 때 relation을 예측한다. 최근 사전학습 언어모델을 적용하여 관계 추출에서 높은 성능을 보이고 있지만, entity에 대한 방향성을 고려하여 relation을 예측하는지 알 수 없다. 본 논문에서는 관계 추출에서 entity의 방향성을 고려하여 relation을 예측하는지 실험하기 위해 문장 수준의 Adversarial Attack과 단어 수준의 Sequence Labeling을 적용하였다. 또한 관계 추출에서 문장에 대한 이해를 높이기 위해 BERT모델을 적용하여 실험을 진행하였다. 실험 결과 관계 추출에서 entity에 대한 방향성을 고려하지 않음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.