• Title/Summary/Keyword: 컴퓨터 방사선

Search Result 430, Processing Time 0.03 seconds

3D Stacked Radiation Collimator (적층구조의 3차원 콜리메이터)

  • Yoon, Dok-Un;Lee, Tae-Woong;Lee, Won-Ho
    • Journal of radiological science and technology
    • /
    • v.36 no.2
    • /
    • pp.157-163
    • /
    • 2013
  • Multileaf collimators whose Pb leaves are moving in two-dimensional directions have been used. We propose a different concept three-dimensional (3D) collimator with 3D shape that is automatically changeable to modulate the radiation dose even for complex tumors in real time. A voxel collimator, including a hinged Pb plane and a 3D assembly of many voxel collimators, was used. In each frame rotation axis, a motor, which was controlled by a circuit with field-programmable gate array (FPGA) board connected with computer, was operated according to a predetermined plan. Simulations of that, which are generally used for planning, were performed and compared with experimental results.

Evaluation of the Applicability of PET/CT Phantom as a 3D Printing Material (PET/CT 팬텀의 3D 프린팅 소재 적용 가능성 평가)

  • Lee, Ju-young;Kim, Ji-Hyeon;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.423-431
    • /
    • 2022
  • The purpose of this study is to present objective information in applying 3D printing technology for PET/CT (Positron Emission Tomography/Computed Tomography) performance evaluation and use it as a basic research that can be applied to various purposes in the future. Phantoms were manufactured with step wedge of ABS(Acrylonitrile Butadiene Styrene) and ACR(Acrylic acid) material. The counts for each ROI(Region of Interest) were analyzed through image acquisition in PET/CT. And the variation rate of counts and CNR(Contrast Noise Ratio) was evaluated. In the counts analysis, the effect of thickness occurred. In addition, in the variation rate analysis, the thickness setting of steps wedge 4 to 5 levels should be considered first. These results minimize quantitative and qualitative changes in the phantom manufactured based on 3D printing, and enable more stable PET/CT performance evaluation. Based on 3D printing in PET/CT, various phantoms are expected to be produced in the future. If the characteristics of each material are considered and applied through the basic research such as this research, the result of the phantom manufactured through 3D printing can be more meaningful and will be used in a wide range.

Comparison of Based on Histogram Equalization Techniques by Using Normalization in Thoracic Computed Tomography (흉부 컴퓨터 단층 촬영에서 정규화를 사용한 다양한 히스토그램 평준화 기법을 비교)

  • Lee, Young-Jun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.473-480
    • /
    • 2021
  • This study was purpose to method that applies for improving the image quality in CT and X-ray scan, especially in the lung region. Also, we researched the parameters of the image before and after applying for Histogram Equalization (HE) such as mean, median values in the histogram. These techniques are mainly used for all type of medical images such as for Chest X-ray, Low-Dose Computed Tomography (CT). These are also used to intensify tiny anatomies like vessels, lung nodules, airways and pulmonary fissures. The proposed techniques consist of two main steps using the MATLAB software (R2021a). First, the technique should apply for the process of normalization for improving the basic image more correctly. In the next, the technique actively rearranges the intensity of the image contrast. Second, the Contrast Limited Adaptive Histogram Equalization (CLAHE) method was used for enhancing small details, textures and local contrast of the image. As a result, this paper shows the modern and improved techniques of HE and some advantages of the technique on the traditional HE. Therefore, this paper concludes that various techniques related to the HE can be helpful for many processes, especially image pre-processing for Machine Learning (ML), Deep Learning (DL).

Analysis on Optimal Approach of Blind Deconvolution Algorithm in Chest CT Imaging (흉부 컴퓨터단층촬영 영상에서 블라인드 디컨볼루션 알고리즘 최적화 방법에 대한 연구)

  • Lee, Young-Jun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.145-150
    • /
    • 2022
  • The main purpose of this work was to restore the blurry chest CT images by applying a blind deconvolution algorithm. In general, image restoration is the procedure of improving the degraded image to get the true or original image. In this regard, we focused on a blind deblurring approach with chest CT imaging by using digital image processing in MATLAB, which the blind deconvolution technique performed without any whole knowledge or information as to the fundamental point spread function (PSF). For our approach, we acquired 30 chest CT images from the public source and applied three type's PSFs for finding the true image and the original PSF. The observed image might be convolved with an isotropic gaussian PSF or motion blurring PSF and the original image. The PSFs are assumed as a black box, hence restoring the image is called blind deconvolution. For the 30 iteration times, we analyzed diverse sizes of the PSF and tried to approximate the true PSF and the original image. For improving the ringing effect, we employed the weighted function by using the sobel filter. The results was compared with the three criteria including mean squared error (MSE), root mean squared error (RMSE) and peak signal-to-noise ratio (PSNR), which all values of the optimal-sized image outperformed those that the other reconstructed two-sized images. Therefore, we improved the blurring chest CT image by using the blind deconvolutin algorithm for optimal approach.

Assessment of DRL for Computed Tomography in Local Hospital (지역병원에서의 전산화단층촬영 검사에 대한 DRL 평가)

  • Choi, Seok-Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.619-625
    • /
    • 2022
  • In the field of imaging medicine, computed tomography is one of the most common test methods and one of the most frequently used test methods in hospitals. However, it is accompanied by a very high radiation exposure compared to other test methods. In order to reduce exposure, CT scans should be performed only when absolutely necessary, and even if the tests are performed because they are absolutely necessary, a protocol that serves the purpose of the test and allows the test to be performed in a small dose should be used. In this study, we wanted to learn about the most up-to-date radiation dose usage information used by the region's leading general hospitals and develop a diagnostic reference level (DRL). In the experimental results, the Head CT and Abdomen CT tests showed that DLP was higher than the NRPB (U.K) and Korean DRL. The DLP values used by Chest CT were low for all 3 types of CT devices. The hospital found that efforts to reduce exposure should be made during CT examinations, and in particular, Head CT and Abdomen CT determined that efforts to reduce exposure were necessary.

Development of an Internet-Based Medical Diagnosis System (인터넷 기반 원격 의료 진단 시스템 개발)

  • Lee Kyung-Tae;Lim Hyung-Joo;Kim Sang-Wook;Ahn Yun-Ho;Youn Yeo-Dong
    • Journal of Digital Contents Society
    • /
    • v.3 no.1
    • /
    • pp.75-88
    • /
    • 2002
  • Radiologic images are widely used in hospitals for diagnosing and treating patients' diseases. The radiologist accurately reads radiologic images, and thus helps diagnose patients correctly. The number of radiologists is much smaller than is necessary, however. In some small or rural hospitals, there are no radiologists residing there. In these cases, correct diagnosis and treatment are infeasible. Also, radiologists are not resident at hospitals all day long. Thus, emergency patients would suffer from the absence of radiologists at night. XRay21 Inc. and Data & Knowledge Engineering Lab. at Kangwon National University have been working together since 2000 in order to alleviate the problems above. Currently, the advances of the computer and network technology make it possible to connect a lot of radiologists and hospitals together through the Internet. By fully utilizing the Internet environment, we have developed an Internet-based medical diagnosis system, thus permitting remote diagnosis of radiologic images. This paper presents the technical experiences obtained in developing the system.

  • PDF

Evaluation of Image Receptor Characteristics in Computed Radiography System Using Exposure Index in International Electrotechnical Commission (I) (IEC 규정 노출지수를 활용한 디지털 방사선 영상시스템에서의 영상 수용체간 특성평가 (I))

  • Park, Hyemin;Yoon, Yongsu;Roh, Younghoon;Kim, Sungjun;Na, Chanyoung;Han, Taeho;Kim, Jungsu;Jeong, hoiwoun;Kim, Jungmin
    • Journal of radiological science and technology
    • /
    • v.42 no.4
    • /
    • pp.291-299
    • /
    • 2019
  • The International Electrotechnical Commission (IEC) has regulated the definition and requirements of the exposure index (EI). In this study, we calculated the EI of several image receptors in digital radiography system of two different manufacturers according to the method as per IEC, and evaluated the relationship with incident air kerma. To calculate the EI, w e obtained the characteristics curve of each image receptor by increasing the incident air kerma at RQA 3, 5, 7 and 9, respectively. As a result, there was no significant difference in the EI values between different image receptors of the same manufacturer, but EI values of different manufacturer was different despite the same air kerma was incident. Therefore, understanding the characteristics of the digital radiography systems is important in order to use EI as a tool for measuring and managing the radiation dose.

A Study on the Application of Deep Learning Model by Using ACR Phantom in CT Quality Control (CT 정도관리에서 ACR 팬텀을 이용한 딥러닝 모델 적용에 관한 연구)

  • Eun-Been Choi;Si-On Kim;Seung-Won Choi;Jae-Hee Kim;Young-Kyun Kim;Dong-Kyun Han
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.535-542
    • /
    • 2023
  • This study aimed to implement a deep learning model that can perform quantitative quality control through ACTS software used for quantitative evaluation of ACR phantom in CT quality control and evaluate its usefulness. By changing the scanning conditions, images of three modules of the ACR phantom's slice thickness (ST), low contrast resolution (LC), and high contrast resolution (HC) were obtained and classified as ACTS software. The deep learning model used ResNet18, implementing three models in which ST, HC, and LC were learned with epoch 50 and an integrated model in which three modules were learned with Epoch 10, 30, and 50 at once. The performance of each model was evaluated through Accuracy and Loss. When comparing and evaluating the accuracy and loss function values of the deep learning models by ST, LC, and HC modules, the Accuracy and Loss of the HC model were the best with 100% and 0.0081, and in the integrated model according to the Epoch value, Accuracy and Loss with epoch 50 were the best with 96.29% and 0.1856. This paper showed that quantitative quality control is possible through a deep learning model, and it can be used as a basis and evidence for applying deep learning to the CT quality control.

Development of CT/MRI based GUI Software for 3D Printer Application (3차원 프린터 응용을 위한 CT/MRI-영상 기반 GUI소프트웨어 개발)

  • Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.451-456
    • /
    • 2018
  • During last a decade, there has been increased demand for 3D-printed medical devices with significant improvement of 3D-Printer (also known as Additive. Manufacturing AM), which depend upon human body features. Especially, demand for personalized medical material is highly growing with being super-aged society. In this study, 3D-reconstructed 3D mesh image from CT/MRI-images is demonstrated to analyse each patients' personalized anatomical features by using in house, then to be able to manufacture its counterpart. Developed software is distributed free of charge, letting various researcher identify biological feature for each areas.

Study on the multi-channel dosimetry system with microprocessor and its application to radition therapy (마이크로 프로세서를 이용한 선량측정 장치의 제작과 그 응용에 관한 연구)

  • 강정구;이정옥;김승곤;김부길;김진기
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.19-24
    • /
    • 1992
  • We have desingned multi channel dosimetry system with Intel single-chip microprocessor. We considered that this system is very useful for patient dose measurement, measurement of sealed source dose distribution and calibration of small field for stereotatic radiosurgery system We have designed that this system use commercially available semicondutor detector and personal computer can control this system and process data through RS-232C serial port.

  • PDF