• Title/Summary/Keyword: 컴퓨터 모델

Search Result 5,813, Processing Time 0.036 seconds

Network intrusion detection Model through Hybrid Feature Selection and Data Balancing (Hybrid Feature Selection과 Data Balancing을 통한 네트워크 침입 탐지 모델)

  • Min, Byeongjun;Shin, Dongkyoo;Shin, Dongil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.526-529
    • /
    • 2020
  • 최근 네트워크 환경에 대한 공격이 급속도로 고도화 및 지능화 되고 있기에, 기존의 시그니처 기반 침입탐지 시스템은 한계점이 명확해지고 있다. 이러한 문제를 해결하기 위해서 기계학습 기반의 침입 탐지 시스템에 대한 연구가 활발히 진행되고 있지만 기계학습을 침입 탐지에 이용하기 위해서는 두 가지 문제에 직면한다. 첫 번째는 실시간 탐지를 위한 학습과 연관된 중요 특징들을 선별하는 문제이며 두 번째는 학습에 사용되는 데이터의 불균형 문제로, 기계학습 알고리즘들은 데이터에 의존적이기에 이러한 문제는 치명적이다. 본 논문에서는 위 제시된 문제들을 해결하기 위해서 Hybrid Feature Selection과 Data Balancing을 통한 심층 신경망 기반의 네트워크 침입 탐지 모델을 제안한다. NSL-KDD 데이터 셋을 통해 학습을 진행하였으며, 평가를 위해 Accuracy, Precision, Recall, F1 Score 지표를 사용하였다. 본 논문에서 제안된 모델은 Random Forest 및 기본 심층 신경망 모델과 비교해 F1 Score를 기준으로 7~9%의 성능 향상을 이루었다.

Korean End-to-end Neural Coreference Resolution with BERT (BERT 기반 End-to-end 신경망을 이용한 한국어 상호참조해결)

  • Kim, Kihun;Park, Cheonum;Lee, Changki;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.181-184
    • /
    • 2019
  • 상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 같은 개체(entity)를 의미하는 멘션을 찾아 그룹화하는 자연어처리 태스크이다. 한국어 상호참조해결에서는 멘션 탐지와 상호참조해결을 동시에 진행하는 end-to-end 모델과 포인터 네트워크 모델을 이용한 방법이 연구되었다. 구글에서 공개한 BERT 모델은 자연어처리 태스크에 적용되어 많은 성능 향상을 보였다. 본 논문에서는 한국어 상호참조해결을 위한 BERT 기반 end-to-end 신경망 모델을 제안하고, 한국어 데이터로 사전 학습된 KorBERT를 이용하고, 한국어의 구조적, 의미적 특징을 반영하기 위하여 의존구문분석 자질과 개체명 자질을 적용한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터 셋에서 CoNLL F1 (DEV) 71.00%, (TEST) 69.01%의 성능을 보여 기존 연구들에 비하여 높은 성능을 보였다.

  • PDF

Movie Revies Sentiment Analysis Considering the Order in which Sentiment Words Appear (감성 단어 등장 순서를 고려한 영화 리뷰 감성 분석)

  • Kim, Hong-Jin;Kim, Dam-Rin;Kim, Bo-Eun;Oh, Shin-Hyeok;Kim, Hark-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.313-316
    • /
    • 2020
  • 감성 분석은 문장의 감성을 분석해 긍정 또는 부정으로 분류하는 작업을 의미한다. 문장에 담긴 감성을 파악해야 하기 때문에 문장 전체를 이해하는 것이 중요하다. 그러나 한 문장에 긍정과 부정의 이중 극성이 동존하는 문장은 감성 분석에 혼동이 생길 수 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 단어의 감성 점수 예측을 통해 감성 단어 등장 순서를 고려한 감성 분석 모델을 제안한다. 또한 최근 다양한 자연어 처리 분야에서 좋은 성능을 보이는 사전 학습 언어 모델을 활용한다. 실험 결과 감성 분석 정확도 90.81%로 기존 모델들에 비해 가장 좋은 성능을 보였다.

  • PDF

Design of Pet Behavior Classification Method Based On DeepLabCut and Mask R-CNN (DeepLabCut과 Mask R-CNN 기반 반려동물 행동 분류 설계)

  • Kwon, Juyeong;Shin, Minchan;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.927-929
    • /
    • 2021
  • 최근 펫팸족(Pet-Family)과 같이 반려동물을 가족처럼 생각하는 가구가 증가하면서 반려동물 시장이 크게 성장하고 있다. 이러한 이유로 본 논문에서는 반려동물의 객체 식별을 통한 객체 분할과 신체 좌표추정에 기반을 둔 반려동물의 행동 분류 방법을 제안한다. 이 방법은 CCTV를 통해 반려동물 영상 데이터를 수집한다. 수집된 영상 데이터는 반려동물의 인스턴스 분할을 위해 Mask R-CNN(Region Convolutional Neural Networks) 모델을 적용하고, DeepLabCut 모델을 통해 추정된 신체 좌푯값을 도출한다. 이 결과로 도출된 영상 데이터와 추정된 신체 좌표 값은 CNN(Convolutional Neural Networks)-LSTM(Long Short-Term Memory) 모델을 적용하여 행동을 분류한다. 본 모델을 바탕으로 행동을 분석 및 분류하여, 반려동물의 위험 상황과 돌발 행동에 대한 올바른 대처를 제공할 수 있는 기반을 제공할 것이라 기대한다.

Proposal of CCTV Storage Space Securing Model using YOLO v3 Library (YOLO v3 라이브러리를 이용한 CCTV 저장공간 확보 모델 제안)

  • Kim, Seong-Ik;Kim, Hwangrae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.105-106
    • /
    • 2022
  • 본 논문에서는 YOLO v3 라이브러리를 이용하여 CCTV 저장 공간을 확보하는 모델을 제안한다. 사회안전망을 구축하기 위해 CCTV 설치가 확대되고, 그에 따라 많은 CCTV가 운영됨에 있어 저장 공간이 부족한 현상이 늘고 있다. 이에 본 논문에서는 학습된 데이터 셋을 활용하여 CCTV 영상파일의 프레임을 확인하여 움직임이 있는 객체가 있는지 판단하고, 움직임이 감지되는 프레임 영상을 저장한다. 제안 모델을 적용하여 테스트 한 결과 원본 데이터 크기보다 결과 데이터 크기가 85% 감소됨을 확인하였다. 인적이 드문 곳에 설치된 CCTV의 경우 제안 모델을 적용할 경우, 저장 공간의 관리 및 운영이 용이해질 것으로 기대할 수 있다.

  • PDF

Efficient Gait Data Selection Using Explainable AI (해석 가능한 인공지능을 이용한 보행 데이터의 효율적인 선택)

  • Choi, Young-Chan;Tae, Min-Woo;Choi, Sang-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.315-316
    • /
    • 2022
  • 본 논문은 스마트 인솔의 압력 데이터를 이용하는 컨볼루션 신경망 모델에 해석가능한 인공지능 방법인 Grad-CAM을 적용하는 방법을 제안한다. 학습된 각 모델에 Grad-CAM을 적용하여 모델에서 중요한 역할을 하는 압력센서와 중요하지 않은 압력센서를 알아내는 방법을 제안하고 데이터마다 학습을 진행하고 학습된 모델을 통해 실제로 중요한 압력센서와 그렇지 않은 압력센서에 대해서 알아본다.

  • PDF

Pose Estimation through 3D modeling based on NeRF (NeRF 기반 3차원 모델링을 통한 자세 추정)

  • Park, Chan;Kim, Hyungju;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.600-602
    • /
    • 2022
  • 2차원 이미지 또는 영상을 통한 자세 추정의 경우, 영상 내에서 발생할 수 있는 탐지 오류, 피사체 잘림, 폐색(Occlusion) 등으로 인해 자세 추정 정확도가 감소할 수 있다. 본 논문에서는 4장 이상의 다양한 각도로 촬영한 이미지를 NeRF(Neural Radiance Fields)를 통해 이미지 합성(Image synthesis)을 진행하여 3차원 모델을 생성한다. 이후 DeepLabCut을 사용하여 관절 좌표와 골격(Skeleton)을 구축한다. 구축한 골격을 인공지능에 학습시킨 뒤 2차원 영상에서의 관절 좌표 인식, 골격 구축, 자세 추정을 진행한다. 2차원 영상 테스트 데이터를 통해, 3차원 모델을 사전 학습한 인공지능 모델과 기존 2차원 이미지를 사용하여 학습한 인공지능 모델의 자세 추정 정확도를 비교한다.

Deep Learning-based Image Data Processing for Golf Course Simulation (골프 코스 시뮬레이션을 위한 딥 러닝 기반 이미지 데이터 처리 기법)

  • Seunghyun Kim;Wonje Choi;Honguk Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.545-548
    • /
    • 2023
  • 본 논문에서는 골프 코스 시뮬레이션을 위해 수집된 데이터의 정제 및 처리에 요구되는 딥 러닝 모델과 모델 적용 과정에 대해서 논의한다. 최근 스크린 골프 시장의 확대와 골프 시뮬레이터 기술의 발전으로, 위성 이미지, 항공 촬영 이미지, 공간 정보 시스템 (GIS) 등 다양한 데이터 소스로부터 골프 코스에 대한 정보를 수집에 대한 요구가 증가하였다. 이번 연구에서는 이러한 데이터 소스로부터 생성된 원시 데이터를 최적의 시뮬레이션 입력으로 변환하기 위한 컴퓨터 비전 기법과 딥 러닝 모델 구조에 대해서 검토한다. 특히, 데이터에서 골프 코스 시뮬레이션에 요구되는 메타 데이터를 도출하기 위해 코스 분할(Segmentation)과 코스 오브젝트 분류(Classification) 모델을 적용하는 과정을 다룬다. 이를 통해, 본 연구는 골프 코스 시뮬레이터의 개발 과정에서 중요한 기술 요소를 제공하며, 이는 시뮬레이션의 정확도와 골프 코스의 다양성을 증진시키는데에 기여한다.

  • PDF

A Method for Extracting Persona Triples in Dialogue (발화 내 페르소나 트리플 추출 방법 연구)

  • Yoonna Jang;Kisu Yang;Yuna Hur;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.726-729
    • /
    • 2023
  • 본 논문에서는 대화 중 발화에서 페르소나 트리플을 추출하는 방법을 연구한다. 발화 문장과 그에 해당하는 트리플 쌍을 활용하여 발화 문장 혹은 페르소나 문장이 주어졌을 때 그로부터 페르소나 트리플을 추출하도록 모델을 멀티 태스크 러닝 방식으로 학습시킨다. 모델은 인코더-디코더 구조를 갖는 사전학습 언어모델 BART [1]와 T5 [2]를 활용하며 relation 추출과 tail 추출의 두 가지 태스크를 각각 인코더, 디코더 위에 head를 추가하여 학습한다. Relation 추출은 분류로, tail 추출은 생성 문제로 접근하도록 하여 최종적으로 head, relation, tail의 구조를 갖는 페르소나 트리플을 추출하도록 한다. 실험에서는 BART와 T5를 활용하여 각 태스크에 대해 다른 학습 가중치를 두어 훈련시켰고, 두 모델 모두 relation과 tail을 추출하는 태스크 정확도에 있어서 90% 이상의 높은 점수를 보임을 확인했다.

  • PDF

Design and Implement o SOiVA model based on imprimatur model (Imprimatur 모델을 기반으로 한 SOiVA 모델의 설계 및 구현)

  • Kyuho Kim;So Jung Lim;Young Man Kim;Wan Choi;Sung Jin Hur
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1296-1299
    • /
    • 2008
  • 전자상거래 산업에서 가장 많이 참조가 되고 있으며, MPEG-21 에서도 기본 개념으로 활용하고 있는 유통모델인 IMPRIMATUR 모델을 이용하여, DRM 개념을 적용하고 동영상 거래에 있어서 디지털 콘텐츠의 불법유통과 복제를 방지하고 과금 서비스등을 통하여 디지털 콘텐츠 저작권을 관리하여 SOiVA 시스템을 보다 신뢰적인 시스템으로 설계하고, SOiVA 서비스를 적용한 응용프로그램을 구현하였으며, 이에 있어서 향후 연구 과제를 제시한다.