• 제목/요약/키워드: 컴퓨터 모델

검색결과 5,813건 처리시간 0.037초

표준 치아를 모델링하기 위한 효율적인 방법 (An Efficient Method for Modeling a Standard Tooth)

  • 장진호;김병오;유관회
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (하)
    • /
    • pp.1221-1224
    • /
    • 2001
  • 최근 몇 년간 의학 분야에서는 인체의 해부학적 조직을 컴퓨터 그래픽스 기술을 이용해 재구성하는데 관심이 증대되어 왔다. 치과 치료분야에서도 컴퓨터 그래픽스 기술에 대한 관심이 증대되고 있고, 이를 이용한 다양한 치료법들이 개발되고 있다. 자료를 측정한다거나, 시각적으로 3차원의 영상을 보여 줄 수도 있다 또한, CAD-CAM 기술을 이용하여 의치의 틀이나 금형 등을 직접 제작할 수도 있다. 본 논문에서는, 이러한 컴퓨터 그래픽스 기술을 이용한 치과 치료에 기념이라 할 수 있는 표준 치아에 대한 모델링 데이터를 만들고자한다. 그러기 위해 표준치아의 실제 모델을 3차원 스캐너로 입력받는다. 그리고 입력받는 과정에서 발생하는 오류를 수정하여, 정확한 표준 치아 모델을 모델링한다.

  • PDF

확률적 컴퓨터 성능평가 모델설정에 관한 연구 (A Study on the Construction of the Stochastic Model for the Computer Systems Performance Evaluation)

  • 김상복;김정기
    • 한국통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.58-64
    • /
    • 1989
  • 본 논문은 benchmark program의 명령어 mix들과 이 명령어 mix들의 분포와 빈도돌을 parameter로 해서 컴퓨터 성능평가를 행할 수 있는 확률적 모델을 제시한다. 이 모델을 Intel 8086/8083마이크로 프로세서의 성능 평가에 적용시켜 봄으로써, 현존하는 컴퓨터시스템뿐만 아니라 미개발 시스템을 위한 성능 평가 모델로도 가능하다는 것을 보였다.

  • PDF

워크로드 섀이핑을 통한 클라우드 환경에서의 전력당 성능비 최적화 모델 (A Power-Performance Optimization Model on Cloud Environment Through Workload Shaping)

  • 김웅섭
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.290-292
    • /
    • 2012
  • 클라우드 컴퓨팅에서는 사용량 당 과금 정책을 통해 서비스를 제공하여 사용자에게 높은 수준의 QoS 를 제공함과 동시에 비용절감의 효과를 가지고 있다. 하지만 클라우스 서비스 제공 업체에서는 최대 서비스 요구량을 만족시킬 수 있도록 시스템을 구성해야 할 필요가 있으며, 이에 맞추어 상당한 시간동안 다수의 자원을 유휴상태로 운영하여야 한다. 데이터 센터를 유휴상태로 운영될 경우 즉시 서비스 제공이 가능하다는 장점이 있으나 반대로 전력을 낭비한다는 단점을 가진다. 본 연구는 최소한의 전력소모를 하면서 QoS 를 보장할 수 있도록 하는 시스템 구축 모델을 제시하는 데 목적이 있으며 시뮬레이션 결과를 통하여 우리가 제시한 모델의 적절성을 보이려고 한다. 우리의 모델은 요청 작업 타입에 따른 traffic shaping 기법을 도입하여 작업을 저전력 컴퓨터와 고성능 컴퓨터에 분산배치하도록 하는데 목적이 있으며 가상화 기법을 통해 작업의 신속한 분산작업을 수행하는 방법을 사용한다.

지식의 증류기법을 이용한 샷 경계 검출 모델 (Shot Boundary Detection Model using Knowledge Distillation)

  • 박성민;윤의녕;조근식
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.29-31
    • /
    • 2019
  • 샷 경계 검출(Shot Boundary Detection)은 영상 콘텐츠 분석을 위한 필수적인 기술이며, 다양한 방식으로 편집된 영상의 샷 경계를 정확하게 검출하기 위한 연구가 지속되어 왔다. 그러나 기존에 연구들은 고정된 샷 경계 검출 알고리즘이나 매뉴얼한 작업과 같이 학습이 불가능한 과정이 포함되어 있어 성능 개선에 한계가 있었다. 본 논문에서는 이러한 과정을 제거한 End-to-End 모델을 제안한다. 제안하는 모델은 시공간 정보 추출성능을 높이기 위해 행동 인식 데이터셋을 이용한 전이학습을 사용하고, 샷 경계 검출 성능을 높이기 위해 개선된 지식의 증류기법(Knowledge Distillation)을 결합한다. 제안하는 모델은 ClipShots 데이터셋에서 DeepSBD 에 비해 cut transition 과 gradual transition 이 각각 5.4%, 41.29% 높은 성능을 보였고, DSM 과의 비교에서 cut transition 의 정확도가 1.3% 더 높은 결과를 보였다.

  • PDF

은닉 조건부 랜덤 필드를 이용한 인간 행위 인식 시스템의 설계 (Design of a Human Activity Recognition System using Hidden Conditional Random Fields)

  • 김혜숙;한유미;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1332-1335
    • /
    • 2013
  • 본 논문에서는 키넥트 센서 데이터에 은닉 조건부 랜덤 필드 모델을 적용하여 인간의 일상 행위를 인식하는 시스템을 제안한다. 많은 고수준의 일상 행위들은 다수의 부속 행위들이 순차적 혹은 반복적으로 수행되어 나타나는 하나의 계층구조로 볼 수 있다. 따라서 제안하는 시스템에서는 이러한 고수준의 일상 행위들을 순차성과 계층성을 잘 표현할 수 있는 확률 그래프 모델의 하나인 은닉 조건부 랜덤 필드 모델로 모델링함으로써, 행위 인식률을 높이려고 시도하였다. 또한 제안하는 시스템에서는 효과적인 행위 모델의 학습과 적용을 위해, 모션 특징, 구조 특징, 손 위치 특징과 같은 다양한 종류의 특징들을 키넥트 센서 데이터로부터 추출하여 이들을 이용하였다. 그리고 12 가지 일상 행위들에 관한 코넬 대학의 CAD-60 데이터 집합을 이용한 다양한 실험을 통해, 제안하는 시스템의 우수한 인식 성능을 확인할 수 있었다.

RISC-V 가상플랫폼 기반 Yolov3-tiny 물체 탐지 딥러닝 모델 구현 (Implementation of Yolov3-tiny Object Detection Deep Learning Model over RISC-V Virtual Platform)

  • 김도영;설희관;임승호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.576-578
    • /
    • 2022
  • 딥러닝 기술의 발전으로 객체 인색, 영상 분석에 관한 성능이 비약적으로 발전하였다. 하지만 고성능 GPU 를 사용하는 컴퓨팅 환경이 아닌 제한적인 엣지 디바이스 환경에서의 영상 처리 및 딥러닝 모델의 적용을 위해서는 엣지 디바이스에서 딥러닝 모델 실행 환경 과 이에 대한 분석이 필요하다. 본 논문에서는 RISC-V ISA 를 구현한 RISC-V 가상 플랫폼에 yolov3-tiny 모델 기반 객체 인식 시스템을 소프트웨어 레벨에서 포팅하여 구현하고, 샘플 이미지에 대한 네트워크 딥러닝 연산 및 객체 인식 알고리즘을 적용하여 그 결과를 도출하여 보았다. 본 적용을 바탕으로 RISC-V 기반 임베디드 엣지 디바이스 플랫폼에서 딥러닝 네트워크 연산과 객체 인식 알고리즘의 수행에 대한 분석과 딥러닝 연산 최적화를 위한 알고리즘 연구에 활용할 수 있다.

Temporal Fusion Transformer 모델을 활용한 다층 수평 시계열 데이터 분석 (Multi-horizon Time Series Forecasting Using Temporal Fusion Transformer)

  • 김인경;김대희;이재구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.479-482
    • /
    • 2021
  • 시계열 형태의 데이터는 다양한 분야에서 수집되고 응용되기 때문에 정확한 시계열 예측은 많은 분야에서 운영 효율성을 높일 수 있는 중요한 분석 방법으로 고려된다. 그중 다층 수평 예측은 사용자에게 전반적인 시계열 데이터 경향성을 제공할 수 있다. 하지만 다양한 정보를 포함하는 시계열 데이터는 데이터에 내재한 이질성(heterogeneity)까지 포괄적으로 고려한 방법을 통해서만 정확한 예측을 할 수 있다. 하지만 지금까지 많은 시계열 분석 모델들이 데이터의 이질성을 반영하지 못했다. 이러한 한계를 보완하고자 우리는 Temporal Fusion Transformer 모델을 사용하여 실생활과 밀접한 관련이 있는 데이터에 적용하여 이질성을 고려한 향상된 예측을 수행하였다. 실제, 주식 데이터와 미세 먼지 데이터와 같은 실생활 시계열 데이터에 적용하였고 실험 결과 기존 모델보다 Mean Squared Error(MSE)가 0.3487 낮은 것을 확인하였다.

LSTM 모델의 하이퍼 파라미터가 암호화폐 가격 예측에 미치는 영향 분석 (Understanding the effect of LSTM hyperparameters tuning on Cryptocurrency Price Prediction)

  • 박재현;이동건;서영석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.466-469
    • /
    • 2021
  • 최근 암호화폐가 발전함에 따라 다양한 연구들이 진행되고 있지만 그 중에서도 암호화폐의 가격 예측 연구들이 활발히 진행되고 있다. 특히 이러한 예측 분야에서도 인공지능 기술을 접목시켜 암호화폐 가격의 예측 정확도를 높이려는 노력들이 지속되고 있다. 인공지능 기반의 기법들 중 시간적 정보를 가진 데이터를 기반으로 하고 있는 LSTM(Long Short-Term Memory) 모델이 다각도로 활용되고 있으나 급등락하는 암호화폐 가격 데이터가 많을 경우에는 그 성능이 상대적으로 낮아질 수 밖에 없다. 따라서 본 논문에서는 가격이 급등락하고 있는 Bitcoin, Ethereum, Dash 암호화폐 데이터 환경에서 LSTM 모델의 예측 성능이 향상될 수 있는 세부 하이퍼 파라미터 값을 실험 및 분석하고, 그 결과의 의미에 대해 고찰한다. 이를 위해 LSTM 모델에서 향상된 예측률을 보일 수 있는 epoch, hidden layer 수, optimizer 에 대해 분석하였고, 최적의 예측 결과를 도출해 줄 수 있는 최소 training data 개수도 함께 살펴보았다.

딕셔너리 증류 기법을 적용한 얼굴 초해상화 (Dictionary Distillation in Face Super-Resolution)

  • 조병호;박인규;홍성은
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.193-194
    • /
    • 2021
  • 본 논문에서는 지식 증류 (knowledge distillation) 기법을 적용한 얼굴 초해상화 모델을 제안한다. 제안하는 기법은 최근 얼굴 복원 분야에서 좋은 성능을 보여준 얼굴 영역의 딕셔너리 (dictionary) 정보를 사용한 모델을 선생 모델로 선정하여 적대적 (adversarial) 지식 증류 기법을 통해 효율적인 학생 모델을 구축하였다. 본 논문은 테스트시 얼굴의 사전 정보가 초래하는 추가적인 비용이 필요 없는 얼굴 초해상화 방법을 제시하고, 제안하는 기법과 다양한 기존 초해상화 기법과의 정량적, 정성적 비교를 통해 우수성을 보인다.

  • PDF

시계열 데이터 분류와 NAS를 통한 손동작 인식 (Hand Gesture recognition through NAS and time series classification)

  • 김기덕;김미숙;이학만
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.221-223
    • /
    • 2021
  • 본 논문에서는 손동작 데이터에서 추출한 데이터를 다변수 시계열 데이터 분류를 자동으로 찾는 NAS 모델에 적용하여 손동작 인식 모델을 찾는 방법을 제안한다. NAS를 통해 모델을 구하는 과정은 프로그래머의 시간과 노력을 절감시켜준다. 손동작 인식을 위해 DHG-14/28 데이터셋과 SHREC'17 Track 데이터셋에 논문에서 제안한 방법을 적용하여 손동작 인식 정확도가 기존의 모델보다 높은 손동작 인식률을 얻음을 실험을 통하여 확인하였다. 실험에서 DHG-14/28 데이터셋의 손동작 인식 정확도는 96.38%, 96.63%, SHREC'17 Track 데이터셋의 정확도는 96.88%, 96.57%를 얻었다.

  • PDF