기업 및 공공기관의 클라우드 서비스 도입이 확산되면서 업무 시스템에 대한 보안 요구사항이 변화하고 있다. 기존에는 보호해야 할 정보자산이 물리적으로 외부와 분리된 내부 공간에 집중되었다면 클라우드 환경에서는 자산의 분포 범위가 넓어지면서 내부와 외부의 경계가 모호해진다. 따라서 경계 기반의 전통적인 보안 방식은 클라우드 기반 업무환경에 적합하지 않으며 정보 서비스를 이용하는 전 주기에서 암묵적인 신뢰를 배제하고 지속적으로 검증을 수행하는 제로 트러스트 기반의 업무 시스템 운영이 필요하다. 본 논문에서는 스토리지 클라우드 서비스인 아마존 웹 서비스 S3(Simple Storage Service)에 대하여 제로 트러스트 모델을 설계하고, 직접 서비스를 운영하며 제안된 제로 트러스트 모델의 안전성을 검증한다. 제로 트러스트 모델은 스토리지에 접근하는 사용자에 대한 인증 및 식별 기술, 스토리지 암호화 기술, 암호화 키 관리 기술을 활용하여 설계하였으며 제로 트러스트 기술 적용 시, 스토리지 보안성이 향상되는 것을 실제 서비스 운영을 통한 실험을 통해 확인하였다.
최근 높은 컴퓨팅 파워를 요구하는 응용문제 처리를 위해 고 비용의 슈퍼컴퓨터 대신 인터넷상에 분산된 다수의 일반 컴퓨터들을 이용하는 병렬처리에 관한 연구가 진행되고 있다. 본 연구에서는 다중 에이전트 시스템을 기반으로 하여 이질적인 성능을 갖는 컴퓨터들을 병렬 컴퓨팅 환경으로 구성하고 각 호스트의 성능측정 결과에 따라 효율적으로 작업을 분산하는 기법을 제안한다. 또한 본 연구에서 제안한 방법을 다중 에이전트 시스템인 IBM의 AgletsTM을 사용하여 실험적으로 성능을 평가하고, 기존 연구와 비교한다.
타일 기반 대규모 디스플레이에 컴퓨터 게임과 같은 3D 응용의 화면을 표현하기 위해 다양한 방법과 기술이 시도되고 있다. 컴퓨터게임 개발 시 일반적으로 상용 게임엔진이 활용된다는 점을 고려하여 본 논문은 가장 널리 사용되고 있는 엔진 중의 하나인 유니티 엔진을 사용하여 기 개발된 3D 응용에 적용할 수 있는 원격 분할 렌더링 기술을 제안한다. 본 기술의 3D 응용에 적용한다면 별도의 개발이나 수정 없이 타일 기반 대규모 디스플레이에 컴퓨터게임 화면을 표현할 수 있다. 본 논문은 게임엔진 기반 원격 분할 렌더링 시스템의 구현에 필요한 기술적 이슈를 고찰하고 실험적인 구현을 통해 기술적 가능성을 검증하고자 한다.
합성곱 신경망(Convolutional Neural Network) 기반 객체 탐지기의 발전으로 돈사에서 돼지 모니터링이 가능하지만, 실제 농가에서 적용하기 위해서는 탐지기의 정확도를 개선해야 하는 문제가 여전히 남아있다. 본 연구에서는 합성곱 신경망 기반 돼지 탐지기의 출력인 박스들의 신뢰도 값을 평가하고 잘못된 박스들의 신뢰도 값을 보정하는 박스 레벨 후처리 방법을 제안한다. 즉, 신뢰도 값이 가짜 돼지인지 진짜 돼지인지 애매한 경우, 박스내 전경 픽셀 정보와 인접 박스의 정보를 이용하여 신뢰도 값을 낮추거나 높이는 보정 작업을 수행한다. 그리고 실제 돈사에서 취득한 11,308장의 영상 데이터로 실험한 결과, 제안 방법은 합성곱 신경망 기반 돼지 탐지기의 에러율을 4.4%에서 1.2%로 개선하는 효과가 있음을 확인하였다.
본 연구에서는 웨어러블 디바이스로부터 수집된 다변량 반려동물 행동 데이터를 처리하기 위해, GCN(Graph Convolutional Network)과 GRU(Gated Recurrent Unit)를 결합한 모델을 제안한다. 제안된 모델은 시계열 내부 구조를 활용하여 그래프 구조로 변환하고, DTW(Dynamic Time Warping) 유사도 분석을 통해 노드 간의 시간적 유사도를 기반으로 엣지를 생성한다. 실험결과로 DTW 기반 엣지 생성 방식이 유클리드 거리 및 선형 방식에 비해 더 높은 성능을 나타냈다. 본 연구는 반려동물의 행동을 정확히 분류하기 위한 효과적인 방법론을 제공한다.
본 연구에서는 음성 전처리 기법인 푸리에 변환의 높은 시간 복잡도로 인해 많은 계산 자원을 요구한다는 단점을 보완하기 위한 FTAE(Fourier Transform Auto Encoder)를 설계하고 구현한다. FTAE는 음성 데이터를 입력으로 받아 Early Fusion 특징맵을 출력하도록 설계된 오토인코더 기반 신경망이다. 학습 결과 FTAE의 최종 Training Loss는 0.1479를 나타냈다. 기존 푸리에 변환 기반 Early Fusion 방법과의 성능 비교 실험 결과 FTAE 방법은 Accuracy 0.905, F1-Score 0.905, 탐지 소요 시간 17초의 성능을 보였다. FTAE 방법은 Early Fusion 방법에 비해 Accuracy와 F1-Score는 0.065 하락했지만, 탐지 소요 시간은 약 72배 빠른 결과를 보여주었다.
규칙 기반의 챗봇(Chatbot)은 개발자가 미리 지정한 키워드와 패턴을 통해 사용자의 의도(Intent)를 파악하기 때문에, 챗봇을 응용한 어플리케이션에서는 제한적인 활용도를 보인다. 본 논문에서는 위 문제를 해결하기 위해, 프레임워크 기반의 한글 자연어 처리 챗봇 성능 향상을 위한 점진 학습(Incremental Learning)을 제안한다. DialogFlow는 규칙 기반의 챗봇 프레임워크로서, 사용자 질의 패턴에 대한 사전 학습이 치명적이다. 제안하는 점진 학습 기법은 사용자 질의가 미리 학습되어 있지 않은 경우에도, 유사도 기반으로 질의의 의도를 결정할 수 있다. 이때 entity 조합과 기존에 학습된 질의들과의 유사도를 통해 의도를 결정하여, 프레임워크를 점진적으로 학습한다. 이를 적용하여 연세대학교 정보들을 제공하는 챗봇을 개발하고, 실험을 통해 제안된 점진 학습 기법은 기존 시스템보다 다양한 종류의 질의 처리가 가능하고, 더욱 빠른 응답 속도를 나타내는 것을 확인하였다. 또한 사용자가 증가함에 따라 점진 학습을 통해 성능이 더욱 증가하는 자가 학습 모형으로서의 우수함을 확인하였다.
이 연구는 실무능력이 중시되는 맥락에서 유용한 능력기반 학습환경의 구축방안을 모색해보고, 그 효과성을 실증적으로 탐색하는데 목적이 있다. 이를 위해 기존의 교수설계 패러다임의 발전동향을 토대로 능력기반 학습환경 구축원리를 도출하고, 이른 토대로 일반대학의 교직과목의 하나를 선정하여 구체적인 교수학습 환경을 개발하고, 기본적 실험설계의 틀에 그 효과성을 분석해 보았다. 그 결과 원래 해당 과목이 지향한 3개의 능력 중 2개 능력에서 실험집단이 비교집단보다 향상의 가능성을 보였다. 후속 연구에서는 이 학습환경 모형의 정련화와 아울러 효과검증 방법론을 보다 정련화하고, 표본수 증대를 통한 통계학적 검증이 요청된다.
본 논문에서는 유한한 자원인 네트워크를 보다 많은 이용자가 원활하게 사용하기 위해 고안된 전송 부하 분산 알고리즘인 Round Robin, Weighted Round Robin과 전송 부하 분산 알고리즘이 존재 하지 않는 네트워크를 Petri-net 이론을 기반으로 한 시뮬레이터(CPN-Tools)를 통해 실험 결과를 비교 분석하여 알고리즘의 필요성과 전송 부하 분산 알고리즘의 특징과 장단점을 실험을 통하여 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.