• Title/Summary/Keyword: 컬러 프레임

Search Result 156, Processing Time 0.025 seconds

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

Analysis of the spectroscopic characteristics of Ground color images using a digital camera (디지털 카메라를 활용한 컬러 지상영상의 분광학적 특성 분석)

  • Ko, In-Chul;Seo, Su-Young
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.137-144
    • /
    • 2010
  • Ground digital image data obtained by using DSLR camera can be used to the ground photogrammetry and spatial modeling. Intensity of each pixel in digital video images is the most important parameter to generate digital image. Therefore, it is needed to estimate the parameters and spectral characteristics of digital cameras in order to take more definite intensity data. In this study, using the Sony DSC-F828 DSLR camera, seven digital images are obtained by the continuous shooting. (frame rate, 0.38 seconds). And then extract the value of the intensity from RGB band of each digital color photographs to confirm difference of intensity between frames. The purpose of this study is to confirm spectral characteristics and changes and to estimate correlation through the analysis of statistical in each pixel of R, G, B band.

  • PDF

Change Area Detection using Color and Edge Gradient Covariance Features (색상과 에지 공분산 특징을 이용한 변화영역 검출)

  • Kim, Dong-Keun;Hwang, Chi-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.717-724
    • /
    • 2016
  • This paper proposes a change detection method based on the covariance matrices of color and edge gradient in a color video. The YCbCr color format was used instead of RGB. The color covariance matrix was calculated from the CbCr-channels and the edge gradient covariance matrix was calculated from the Y-channels. The covariance matrices were effectively calculated at each pixel by calculating the sum, squared sum, and sum of two values' multiplication of a rectangle area using the integral images from a background image. The background image was updated by a running the average between the background image and a current frame. The change areas in a current frame image against the background were detected using the Mahalanobis distance, which is a measure of the statistical distance using covariance matrices. The experimental results of an expressway color video showed that the proposed approach can effectively detect change regions for color and edge gradients against the background.

Real Time Implementation of Face Tracking System Using Color Information (색상 정보를 이용한 실시간 얼굴 추적 시스템 구현)

  • 김영운;이형지;정재호
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.151-154
    • /
    • 2001
  • 본 논문의 목적은 범용 USB 카메라 입력 영상으로부터 실시간으로 얼굴을 추적하는 시스템을 구현하는데 있다. 먼저 USB 카메라로부터 영상을 입력받은 후 2차원 RGB 컬러 모델링으로 추출한 살색 영역을 찾고 가로, 세로 프로젝선 정보를 이용하여 얼굴을 찾는다. 기존의 RGB 컬러 모델을 개선하여 빛에 강인한 모델링을 하였으며, 프로젝션 정보를 이용할 때 일어나는 에러를 최소화하기 위하여 누적 히스토그램 영역 결합 알고리즘을 제안하였다. 구현한 시스템은 움직임이 많은 영상에도 빠른 속도를 보였으며, 특히 영상의 움직임이적은 경우 카메라에서 영상을 보여 주는 것과 동시에 얼굴을 찾아내어, 연속적인 프레임을 처리할 수 있는 성능을 보였다.

  • PDF

Extraction of Assault and Violence-in Elevator (폭행 및 폭력의 추출-엘리베이터 내에서)

  • Shin, Seong-Yoon;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.95-97
    • /
    • 2013
  • 현재 엘리베이터 내에서는 수많은 범죄들이 발생하고 있으며, 그 대담성 또한 날로 증가하고 있다. 본 논문에서는 불법한 유형력의 행사인 폭행과 이러한 폭행에 동반되는 물리적인 행사인 폭력에 대하여 의미를 알아본다. 그리고 엘리베이터 내에서 발생하는 폭행과 폭력을 추출하는 방법을 제시하도록 한다. 장면 전환 검출 방법 중의 하나인 컬러히스토그램 기법을 사용하여 키프레임을 추출한다. 추출된 키 프레임들은 영상 포렌식에서 범죄 현장을 담은 장면의 증거자료인 프레임이 된다.

  • PDF

A Novel Segment Extraction and Stereo Matching Technique using Color, Motion and Initial Depth from Depth Camera (컬러, 움직임 정보 및 깊이 카메라 초기 깊이를 이용한 분할 영역 추출 및 스테레오 정합 기법)

  • Um, Gi-Mun;Park, Ji-Min;Bang, Gun;Cheong, Won-Sik;Hur, Nam-Ho;Kim, Jin-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1147-1153
    • /
    • 2009
  • We propose a novel image segmentation and segment-based stereo matching technique using color, depth, and motion information. Proposed technique firstly splits reference images into foreground region or background region using depth information from depth camera. Then each region is segmented into small segments with color information. Moreover, extracted segments in current frame are tracked in the next frame in order to maintain depth consistency between frames. The initial depth from the depth camera is also used to set the depth search range for stereo matching. Proposed segment-based stereo matching technique was compared with conventional one without foreground and background separation and other conventional one without motion tracking of segments. Simulation results showed that the improvement of segment extraction and depth estimation consistencies by proposed technique compared to conventional ones especially at the static background region.

Demosaicing Algorithm by Gradient Edge Detection Filtering on Color Component (컬러 성분 에지 기울기 검출 필터링을 이용한 디모자이킹 알고리즘)

  • Jeon, Gwan-Ggil;Jung, Tae-Young;Kim, Dong-Hyung;Kim, Seung-Jong;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1138-1146
    • /
    • 2009
  • Digital cameras adopting a single CCD detector collect image color by subsampling in three color planes and successively interpolating the information to reconstruct full-resolution color images. Therefore, to recovery of a full-resolution color image from a color filter array (CFA) like the Bayer pattern is generally considered as an interpolation issue for the unknown color components. In this paper, we first calculate luminance component value by combining R, G, B channel component information which is quite different from the conventional demosaicing algorithm. Because conventional system calculates G channel component followed by computing R and B channel components. Integrating the obtained gradient edge information and the improved weighting function in luminance component, a new edge sensitive demosaicing technique is presented. Based on 24 well known testing images, simulation results proved that our presented high-quality demosaicing technique shows the best image quality performance when compared with several recently presented techniques.

Fast Stereo Matching Using Graphic Hardware (그래픽 하드웨어를 이용한 고속 스테레오 정합)

  • Lee, Sang Hwa;Oh, Jun Ho;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.262-265
    • /
    • 2010
  • 본 논문에서는 그래픽 하드웨어와 그래픽 프로그램 기술을 이용하여 고속으로 스테레오 영상의 시차를 추정하는 기법을 제안한다. 우선, 컬러 스테레오 영상에 대하여 mean-shift 기법을 이용하여 컬러를 이용한 영역분할을 수행한다. 분할된 컬러 영역 단위로 가중치를 계산함으로써, 화소단위로 가중치를 계산하는 기존의 방식에 비하여 속도를 높일 수 있다. 블록정합함수를 계산하는 과정에서는 슬라이딩 윈도우 방식을 채택하여, 새로 블록안으로 들어오는 화소열과 빠져나가는 화소열의 정합함수값을 가감하여 화소마다 반복적으로 합산되는 정합함수의 계산량을 크게 줄인다. Middlebury 스테레오 영상을 이용하여 실험 및 평가를 수행한 결과, VGA 급 스테레오 영상을 기준으로 10 프레임 이상을 처리하면서도 기존의 적응적인 가중치를 갖는 블록정합 방식의 성능과 유사한 결과를 확인하였다. 이러한 고속화 방법을 통하여, 기존의 적응적인 가중치를 이용한 블록정합 방식에 비하여 훨씬 고속으로 스테레오 정합을 수행할 수 있으며, 실시간 시차추정이 필요한 시스템에 적용하는 것이 가능하다.

  • PDF

Implementation of a Front Vehicle Extraction System with Shadow Information (그림자 정보를 이용한 전방 차량 검출 시스템 구현)

  • 한상훈;조형제
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.105-110
    • /
    • 2001
  • 차량이 증가함에 따라서 첨단 교통 시스템(intelligent Transportation System: ITS)은 교통의 효율성, 신뢰성, 안정성 향상에 중점을 두게되었다. 첨단 교통 시스템의 일부분인 운전자 도움 시스템(Advanced Drivers Assistance System)은 운전을 하고 있는 상황에서 도움을 주기 위한 체계이고, 전방의 장애물 검지는 운전자 도움 시스템에서 전방의 상황을 운전자에게 알려주기 위한 중요한 요소이다. 본 논문에서는 HSV 컬러모델을 이용하여 연속된 컬러 영상으로부터 도로상의 차선과 방향 표시자에 구애받지 않고 전방의 차량을 검출하는 방법을 제안한다. HSV 컬러 모텔에서 차량을 검출하기 위해서는 태도(Saturation)와 명도(Value)성분의 관계를 이용하여 차량 영역을 구하고, HSV성분과 위치 특징을 이용하여 이전 프레임의 차량인지 검증한다. 도로 영상에서 차량이 있는 경우 차량의 아래 부분에 그림자 영역이 존재한다는 점을 이용한다. 제안된 방식의 효과를 검증하기 위해 노트북 PC와 PC용 CCD 카메라로 도로에서의 영상을 촬영하고 차량검출알고리즘을 적용한 처리 시간, 정확도, 차량검지 등의 결과를 보인다.

  • PDF

Video Object Segmentation using Kernel Density Estimation and Spatio-temporal Coherence (커널 밀도 추정과 시공간 일치성을 이용한 동영상 객체 분할)

  • Ahn, Jae-Kyun;Kim, Chang-Su
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • A video segmentation algorithm, which can extract objects even with non-stationary backgrounds, is proposed in this work. The proposed algorithm is composed of three steps. First, we perform an initial segmentation interactively to build the probability density functions of colors per each macro block via kernel density estimation. Then, for each subsequent frame, we construct a coherence strip, which is likely to contain the object contour, by exploiting spatio-temporal correlations. Finally, we perform the segmentation by minimizing an energy function composed of color, coherence, and smoothness terms. Experimental results on various test sequences show that the proposed algorithm provides accurate segmentation results.

  • PDF