• Title/Summary/Keyword: 컬러 모델

Search Result 310, Processing Time 0.022 seconds

Improvement Method of Tracking Speed for Color Object using Kalman Filter and SURF (SURF(Speeded Up Robust Features)와 Kalman Filter를 이용한 컬러 객체 추적 속도 향상 방법)

  • Lee, Hee-Jae;Lee, Sang-Goog
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.336-344
    • /
    • 2012
  • As an important part of the Computer Vision, the object recognition and tracking function has infinite possibilities range from motion recognition to aerospace applications. One of methods to improve accuracy of the object recognition, are uses colors which have robustness of orientation, scale and occlusion. Computational cost for extracting features can be reduced by using color. Also, for fast object recognition, predicting the location of the object recognition in a smaller area is more effective than lowering accuracy of the algorithm. In this paper, we propose a method that uses SURF descriptors which applied with color model for improving recognition accuracy and combines with Kalman filter which is Motion estimation algorithm for fast object tracking. As a result, the proposed method classified objects which have same patterns with different colors and showed fast tracking results by performing recognition in ROI which estimates future motion of an object.

An Embedded Information Extraction of Color QR Code for Offline Applications (오프라인 응용을 위한 컬러 QR코드의 삽입 정보 추출 방법)

  • Kim, Jin-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1123-1131
    • /
    • 2020
  • The quick-response (QR) code is a two-dimensional barcode which is widely being used. Due to several interesting features such as small code size, high error correction capabilities, easy code generation and reading process, the QR codes are used in many applications. Nowadays, a printed color QR code for offline applications is being studied to improve the information storage capacity. By multiplexing color information into the conventional black-white QR code, the storage capacity is increased, however, it is hard to extract the embedded information due to the color crosstalk and geometrical distortion. In this paper, to overcome these problems, a new type of QR code is designed based on the CMYK color model and the local spatial searching as well as the global spatial matching is introduced in the reading process. These results in the recognition rate increase. Through practical experiments, it is shown that the proposed algorithm can perform the bit recognition rate improvement of about 3% to 5%.

The Proposal of the Robust Fuzzy Wavelet Morphology Neural Networks Algorithm for Edge of Color Image (컬러 영상 에지에 강건한 퍼지 웨이브렛 형태학 신경망 알고리즘 제안)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.53-62
    • /
    • 2007
  • In this paper, it can propose that Fuzzy Wavelet Morphology Neural Networks for the edge detection algorithm with being robustly a unclear boundary parts by brightness difference and being less sensitivity on direction to be detected the edges of images. This is applying the Fuzzy Wavelet Morphology Operator which can be simple the image robustly without the loss of data to DTCNN Structure for improving defect which carrys out a lot of operation complexly. Also, this color image can segment Y image with YCbCr space color model which has a lossless feature information of edge boundary sides effectively. This paper can offer the simulation of color images of 50ea for the performance verification of the proposal algorithm.

  • PDF

Counterfeit Money Detection Algorithm based on Morphological Features of Color Printed Images and Supervised Learning Model Classifier (컬러 프린터 영상의 모폴로지 특징과 지도 학습 모델 분류기를 활용한 위변조 지폐 판별 알고리즘)

  • Woo, Qui-Hee;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.12
    • /
    • pp.889-898
    • /
    • 2013
  • Due to the popularization of high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy to make high-quality counterfeit money. However, the probability of detecting counterfeit money to the general public is extremely low and the detection device is expensive. In this paper, a counterfeit money detection algorithm using a general purpose scanner and computer system is proposed. First, the printing features of color printers are calculated using morphological operations and gray-level co-occurrence matrix. Then, these features are used to train a support vector machine classifier. This trained classifier is applied for identifying either original or counterfeit money. In the experiment, we measured the detection rate between the original and counterfeit money. Also, the printing source was identified. The proposed algorithm was compared with the algorithm using wiener filter to identify color printing source. The accuracy for identifying counterfeit money was 91.92%. The accuracy for identifying the printing source was over 94.5%. The results support that the proposed algorithm performs better than previous researches.

Proposed TATI Model for Predicting the Traffic Accident Severity (교통사고 심각 정도 예측을 위한 TATI 모델 제안)

  • Choo, Min-Ji;Park, So-Hyun;Park, Young-Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.301-310
    • /
    • 2021
  • The TATI model is a Traffic Accident Text to RGB Image model, which is a methodology proposed in this paper for predicting the severity of traffic accidents. Traffic fatalities are decreasing every year, but they are among the low in the OECD members. Many studies have been conducted to reduce the death rate of traffic accidents, and among them, studies have been steadily conducted to reduce the incidence and mortality rate by predicting the severity of traffic accidents. In this regard, research has recently been active to predict the severity of traffic accidents by utilizing statistical models and deep learning models. In this paper, traffic accident dataset is converted to color images to predict the severity of traffic accidents, and this is done via CNN models. For performance comparison, we experiment that train the same data and compare the prediction results with the proposed model and other models. Through 10 experiments, we compare the accuracy and error range of four deep learning models. Experimental results show that the accuracy of the proposed model was the highest at 0.85, and the second lowest error range at 0.03 was shown to confirm the superiority of the performance.

Super-Pixel-Based Segmentation and Classification for UAV Image (슈퍼 픽셀기반 무인항공 영상 영역분할 및 분류)

  • Kim, In-Kyu;Hwang, Seung-Jun;Na, Jong-Pil;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Recently UAV(unmanned aerial vehicle) is frequently used not only for military purpose but also for civil purpose. UAV automatically navigates following the coordinates input in advance using GPS information. However it is impossible when GPS cannot be received because of jamming or external interference. In order to solve this problem, we propose a real-time segmentation and classification algorithm for the specific regions from UAV image in this paper. We use the super-pixels algorithm using graph-based image segmentation as a pre-processing stage for the feature extraction. We choose the most ideal model by analyzing various color models and mixture color models. Also, we use support vector machine for classification, which is one of the machine learning algorithms and can use small quantity of training data. 18 color and texture feature vectors are extracted from the UAV image, then 3 classes of regions; river, vinyl house, rice filed are classified in real-time through training and prediction processes.

Implementation of Mouse Function Using Web Camera and Hand (웹 카메라와 손을 이용한 마우스 기능의 구현)

  • Kim, Seong-Hoon;Woo, Young-Woon;Lee, Kwang-Eui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.5
    • /
    • pp.33-38
    • /
    • 2010
  • In this paper, we proposed an algorithm implementing mouse functions using hand motion and number of fingers which are extracted from an image sequence. The sequence is acquired through a web camera and processed with image processing algorithms. The sequence is first converted from RGB model to YCbCr model to efficiently extract skin area and the extracted area is further processed using labeling, opening, and closing operations to decide the center of a hand. Based on the center position, the number of fingers is decided, which serves as the information to decide and perform a mouse function. Experimental results show that 94.0% of pointer moves and 96.0% of finger extractions are successful, which opens the possibility of further development for a commercial product.

Object Tracking using Color Histogram and CNN Model (컬러 히스토그램과 CNN 모델을 이용한 객체 추적)

  • Park, Sung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • In this paper, we propose an object tracking algorithm based on color histogram and convolutional neural network model. In order to increase the tracking accuracy, we synthesize generic object tracking using regression network algorithm which is one of the convolutional neural network model-based tracking algorithms and a mean-shift tracking algorithm which is a color histogram-based algorithm. Both algorithms are classified through support vector machine and designed to select an algorithm with higher tracking accuracy. The mean-shift tracking algorithm tends to move the bounding box to a large range when the object tracking fails, thus we improve the accuracy by limiting the movement distance of the bounding box. Also, we improve the performance by initializing the tracking start positions of the two algorithms based on the average brightness and the histogram similarity. As a result, the overall accuracy of the proposed algorithm is 1.6% better than the existing generic object tracking using regression network algorithm.

Indoor Scene Classification based on Color and Depth Images for Automated Reverberation Sound Editing (자동 잔향 편집을 위한 컬러 및 깊이 정보 기반 실내 장면 분류)

  • Jeong, Min-Heuk;Yu, Yong-Hyun;Park, Sung-Jun;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.384-390
    • /
    • 2020
  • The reverberation effect on the sound when producing movies or VR contents is a very important factor in the realism and liveliness. The reverberation time depending the space is recommended in a standard called RT60(Reverberation Time 60 dB). In this paper, we propose a scene recognition technique for automatic reverberation editing. To this end, we devised a classification model that independently trains color images and predicted depth images in the same model. Indoor scene classification is limited only by training color information because of the similarity of internal structure. Deep learning based depth information extraction technology is used to use spatial depth information. Based on RT60, 10 scene classes were constructed and model training and evaluation were conducted. Finally, the proposed SCR + DNet (Scene Classification for Reverb + Depth Net) classifier achieves higher performance than conventional CNN classifiers with 92.4% accuracy.

Analysis of browning degree on fresh-cut lotus root (Nelumbo nucifera G.) using image analysis (이미지 분석을 이용한 신선편이 연근의 갈변도 분석)

  • Cho, Jeong-Seok;Kim, Dae-Hyun;Park, Jung-Hoon;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.20 no.6
    • /
    • pp.760-765
    • /
    • 2013
  • The image analysis as a tool for evaluation of browning degree on fresh-cut lotus root was studied. The fresh-cut lotus root treated as 4 groups (Cont-without any treatment, DB-blanching at $50^{\circ}C$ for 5 min in distilled water, AB-blanching at $45^{\circ}C$ for 5 min in 1% ascorbic acid, CB-blanching at $45^{\circ}C$ for 5 min in 1% citric acid). The samples treated with each methods were packaged with 0.04 mm polyethylene bag ($25cm{\times}30cm$) and stored at $4^{\circ}C$ for 9 days. On the RGB color space, the AB and CB group showed high R, G, B value. On the HSV and CIE $L^*a^*b^*$ color space, the AB and CB group showed low browning area, $a^*$, $b^*$ value and high $L^*$ value. Polyphenol oxidase activity was low in the AB and CB groups in all storage period. This result means that the AB and CB groups were inhibited the development of tissue browning. The result of sensory evaluation also supported this opinion. And the correlation coefficient between sensory evaluation with all color values was over 0.84. Especially, the $L^*$ value showed the highest correlation coefficient (0.93). In conclusion, the image analysis is suitable for analysis of browning degree on fresh-cut lotus root by analyzing diverse color value.