• Title/Summary/Keyword: 컨테이너 적하계획

Search Result 37, Processing Time 0.023 seconds

Searching for an Intra-block Remarshalling Plan for Multiple Transfer Cranes (복수 트랜스퍼 크레인을 활용하는 블록 내 재정돈 계획 탐색)

  • Oh Myung-Seob;Kang Jae-Ho;Ryu Kwang-Ryel;Kim Kap-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.7
    • /
    • pp.624-635
    • /
    • 2006
  • This paper applies simulated annealing algorithm to the problem of generating a plan for intra-block remarshalling with multiple transfer cranes. Intra-block remarshalling refers to the task of rearranging containers scattered around within a block into certain designated target areas of the block so that they can be efficiently loaded onto a ship. In generating a remarshalling plan, the predetermined container loading sequence should be considered carefully to avoid re-handlings that may delay the loading operations. In addition, the required time for the remarshalling operation itself should be minimized. A candidate solution in our search space specifies target locations of the containers to be rearranged. A candidate solution is evaluated by deriving a container moving plan and estimating the time needed to execute the plan using two cranes with minimum interference. Simulation experiments have shown that our method can generate efficient remarshalling plans in various situations.

Export Container Remarshaling Planning in Automated Container Terminals (자동화 컨테이너 터미널에서 수출 컨테이너 이적계획)

  • Bae Jong-Uk;Park Yeong-Man;Kim Gap-Hwan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1186-1193
    • /
    • 2006
  • 이적작업은 하역작업 시간을 단축하고 장치장의 효율을 높이기 위해 최근 중요하게 다루어지는 운영 전략들 중의 하나이다. 자동화 컨테이너 터미널에서 수출 컨테이너 이적작업은 작업영역에 제약을 가진 하역장비를 이용하여 장치장 블록에 산재되어 있는 수출 컨테이너들을 적하작업이 용이한 형태로 재배치하는 것이다. 이 연구는 이적 및 적하작업과 연관된 총비용을 최소화하기 위해 어느 베이의 어떤 컨테이너를 어느 베이로 재배치할 지를 결정하기 위한 이적계획을 정의하고 이를 혼합정수계획법으로 모형화하였다. 또한, 실제 현장에서 사용이 가능한 휴리스틱 알고리즘을 제안하였으며 다양한 시나리오를 구성하여 배치형태 및 비용 가중치 등에 대한 민감도를 분석하였다.

  • PDF

Planning for Intra-Block Remarshaling to Enhance the Efficiency of Loading Operations in an Automated Container Terminal (자동화 컨테이너 터미널의 적하 작업 효율 향상을 위한 블록 내 재정돈 계획 수립 방안)

  • Park, Ki-Yeok;Park, Tae-Jin;Kim, Min-Jung;Ryu, Kwang-Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.31-46
    • /
    • 2008
  • A stacking yard of a container terminal is a space for temporarily storing the containers that are carried in or imported until they are carried out or exported. If the containers are stacked in an inappropriate way, the efficiency of operation at the time of loading decreases significantly due to the rehandlings. The remarshaling is the task of rearranging containers during the idle time of transfer crane for the effective loading operations. This paper proposes a method of planning for remarshaling in a yard block of an automated container terminal. Our method conducts a search in two stages. In the first stage, the target stacking configuration is determined in such a way that the throughput of loading is maximized. In the second stage, the crane schedule is determined so that the remarshaling task can be completed as fast as possible in moving the containers from the source configuration to the target configuration. Simulation experiments have been conducted to compare the efficiency of loading operations before and after remarshaling. The results show that our remarshaling plan is really effective in increasing the efficiency of loading operation.

  • PDF

The Method of Container Loading Scheduling through Hierarchical Clustering (계층적 클러스티링 방법을 통한 컨테이너 적재순서 결정 방법)

  • 홍동희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.201-208
    • /
    • 2005
  • Recently, the container terminal requires the study of method to increase efficiency through change of its operation method. Loading plan is a very important part to increase the efficiency of container terminal. Loading Plan is largely divided into two cases, deciding loading location and loading scheduling and this Paper proposes a more efficient method of container loading scheduling. Container loading scheduling is a problem of combination optimization to consider several items of loading location and operation equipments. etc. An existing method of cluster composition that decides the order of container loading scheduling has a restriction to increase the efficiency of work owing to rehandling problem. Therefore, we Propose a more efficient method of container loading scheduling which composes containers with identical attribution, based on ship loading list and yard map, into stack units of cluster, applying to hierarchical clustering method, and defines the restriction of working order. In this process, we can see a possible working path among clusters by defining the restriction of working order and search efficiency will be increased because of restricted search for working path.

  • PDF

Inter-bay Re-marshalling Planning in the Automated Container Terminal (자동화 컨테이너 터미널의 베이간 컨테이너 재배치작업 계획)

  • Bae, Jong-Wook;Park, Young-Man
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.219-226
    • /
    • 2020
  • The container terminal operators established a re-marshalling plan to reduce the loading operation time and the release operation time. Re-marshalling is to rearrange the containers in the container yard to the advantageous position to shorten the working time using the spare time of the automated yard crane. This study assumed the automated container terminal with a perpendicular layout and deals with the inter-bay re-marshalling planning problem in a yard block. The inter-bay re-marshalling plan determines the container to be moved, the location to be relocated, and the sequence of relocation operations. This study presents a mixed integer programming model that simultaneously determines the storage location and the operation sequence while satisfying the spatial availability during the re-marshalling. Numerical experiments are conducted to understand re-marshalling operation using a beam search method.

A Cooperative Coevolutionary Algorithm for Optimizing Remarshaling Plan in an Automated Stacking Yard (자동화 장치장의 재정돈 계획 최적화를 위한 협력적 공진화 알고리즘)

  • Park, Ki-Yeok;Park, Tae-Jin;Ryu, Kwang-꾜디
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.443-450
    • /
    • 2009
  • In this paper, we propose optimizing a remarshaling plan in an automated stacking yard using a cooperative coevolutionary algorithm (CCEA). Remarshaling is the preparation task of rearranging the containers in such a way that the delay are minimized at the time of loading. A plan for remarshaling can be obtained by the following steps: first determining the target slots to which the individual containers are to be moved and then determining the order of movement of those containers. Where a given problem can be decomposed into some subproblems, CCEA efficiently searches subproblems for a solution. In our CCEA, the remarshaling problem is decomposed into two subproblems: one is the subproblem of determining the target slots and the other is that of determining the movement priority. Simulation experiments show that our CCEA derives a plan which is better in the efficiency of both loading and remarshaling compared to other methods which are not based on the idea of problem decomposition.

Container Selecting Methods for Remarshaling Considering Restricted Idle Time of Crane in an Automated Container Terminal (제한된 유휴시간을 고려한 자동화 컨테이너 터미널의 재정돈 컨테이너 선택 방안)

  • Kim, Ji-Eun;Park, Ki-Yeok;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.715-722
    • /
    • 2009
  • In Automated Container Terminal, the remarshaling is the task of rearranging containers for the effective exporting operations. Since available time for the remarshaling is usually restricted, all containers cannot be remarshaled. Therefore, this paper proposes a method that selects some containers from all export containers and then establishes the remarshaling plan with only the selected containers. The experimental results using simulation system shows that our proposal planning method that plans after selecting remarshaling containers is better than plans with all loading containers and remarshals during the available time.

컨테이너 터미널에서 수출컨테이너의 작업순서 및 장치위치 결정

  • Bae, Jong-Uk;Park, Yeong-Man
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.177-178
    • /
    • 2009
  • 본 연구는 반입 작업에서 수출 컨테이너의 작업순서 및 장치위치를 결정하는 문제를 다루었다. 수직 배치형 컨테이너 터미널에서 적하작업시간의 단축을 위해서는 가능한 해측에 컨테이너를 장치하는 것이 유리하지만 반입 외부 트럭의 빠른 회전시간의 측면에서는 육측이 선호된다. 이때 수출 컨테이너의 장치위치는 본선작업 우선순위에 따라 가중치가 다르고 이에 소요되는 장치소요시간에 따라 외부트럭들의 대기시간도 달라진다. 따라서 본 연구는 외부 트럭들의 예정 도착시간과 최대대기시간 그리고 적하작업의 선호 장치위치를 동시에 고려한 혼합정수모델을 개발하고 이를 활용한 적용 예를 제시하였다.

  • PDF

Assignment and Operation Sequencing for Remarshalling of a Vertical Yard Block in Automated Container Terminals (자동화 컨테이너 터미널에서 수직형 블록의 이적작업을 위한 할당 및 작업순서)

  • Bae Jong-Wook;Park Young-Man;Kim Kap-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.457-464
    • /
    • 2006
  • Remarshalling operation is one of the operations considered important in an automated container terminal to perform quickly loading operations and delivery operations. It arranges the containers scattered at a verticla yard block in order to reduce the transfer time and the rehandling time of ATC(Automated Transfer Crane)s. This paper deals with the remarshalling planning problem minimizing the weighted operation time. This problem can be decomposed into 2 subproblems, storage space assignment problem and operation sequencing problem Storage space assignment problem decides to where containers are transported in terms of transportation time cost.. With results of a previous subproblem, operation sequence problem determines the ATC operation sequence, which minimizes the dead-heading of ATC This study formulates each subproblem with mixed integer program and dynamic program. To illustrate the proposed model, we propose an instance to explain the process of remarshalling planning.