• Title/Summary/Keyword: 커터간격

Search Result 21, Processing Time 0.025 seconds

Performance estimation depending on the insert size of conical picks by linear cutting test (선형절삭시험에 의한 코니컬커터의 삽입재 크기에 따른 절삭성능 평가)

  • Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho;Lee, Cheol-Ho;Lee, Gyu-Phil;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.221-233
    • /
    • 2016
  • In order to estimate the performance of a conical cutter depending on the insert size, this study measured forces acting on conical cutters with different cutter spacings, penetration depths and skew angles using slim and heavy conical cutters. When cutter spacings ranged from 12 to 27 mm, the deviations of mean cutter forces with cutter depths appeared smaller compared to other cutter spacings. When skew angle is $0^{\circ}$, the optimal S/d ratio was obtained in the range of 4 to 4.5 for which specific energy of cutting was minimized. It were usually found in the range of 1 to 5. However, when skew angle is $6^{\circ}$, the optimal S/d ratio was obtained in the range of 1 to 3. The simple comparison results shows that the performance of slim cutter was superior to that of heavy cutter, but the use of heavy cutter can be effective, considering the cutter consumption and cutter damage when the strength of the ground is high enough.

Numerical Analysis on Cutting Power of Disc Cutter with Joint Distribution Patterns (절리분포 양상에 따른 디스크커터의 절삭력에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2011
  • The LCM test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. Moreover it is not easy to execute the test for jointed rock mass, and sometimes the design model estimated from the test can not be applied to the real design of disc cutter. In order to break this critical point, lots of numerical studies have been performed. PFC2D can simulate crack propagation and rock fragmentation effectively, because it is useful in particle flow analysis. Consequently, in this study, the PFC2D has been adopted for numerical analysis on cutting power of disc cutter according to the different angle of joint, the different direction of joint, and the different space of joint with jointed rock mass models. From the numerical analyses, it was concluded that the bigger cutting power of disc cutter was needed for reverse cutting direction to joint rather than for forward direction, and the cutting power of disc cutter was increased with decreasing the dip angle of joint and decreasing the space of joints in reverse cutting direction. The more precise numerical model for disc cutter can be developed from comparison between the numerical results and LCM test results, and the resonable guideline is expected for prediction of TBM performance and disc cutter.

A numerical study on rock cutting by a TBM disc cutter using SPH code (SPH 코드를 사용한 TBM 디스크커터의 암석 절삭에 대한 수치해석적 연구)

  • Jeong, Ho-Young;Jeon, Seok-Won;Cho, Jung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.345-356
    • /
    • 2013
  • Numerical simulation on rock cutting by a TBM disc cutter was carried out using SPH (Smoothed Particle Hydrodynamics) code. AUTODYN3D, a commercial software program based on finite element method, was used in this study. The three-dimensional geometry of a disc cutter and a rock specimen were modeled by Lagrange and SPH code respectively. The numerical simulation was carried out for Hwangdeung granite for 10 different cutting conditions. The results of the numerical simulation, i.e. the relation between cutter force and failure behavior, had a good agreement with those from LCM test. The cutter forces measured in the numerical simulation had 10% deviation from the LCM test results. Moreover, the optimum cutter spacing was almost identical with the experimental results. These results indicate that SPH code can be successfully used had applicability for simulation on rock cutting by a TBM disc cutter. However, further study on Lagrange-SPH coupled modelling would be necessary to reduce the computation time.

Rock TBM design model derived from the multi-variate regression analysis of TBM driving data (TBM 굴진자료의 다변량 회귀분석에 의한 암반대응형 TBM의 설계모델 도출)

  • Chang, Soo-Ho;Choi, Soon-Wook;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.531-555
    • /
    • 2011
  • This study aims to derive the statistical models for the estimation of the required specifications of a rock TBM as well as for its cutterhead design suitable for a given rock mass condition. From a series of multi-variate regression analysis of 871 TBM driving data and 51 linear rock cutting test results, the optimum models were newly proposed to consider a variety of rock properties and mechanical cutting conditions. When the derived models were applied to two domestic shield tunnels, their predictions of cutter penetration depth, cutter acting forces and cutter spacing were very close to real TBM driving data, showing their high applicability.

Numerical Analysis on Fragmentation Mechanism by Indentation of Disc Cutter in a Rock Specimen with a Single Joint (단일절리를 포함한 암석 시험편에서 디스크 커터의 압입에 의한 파괴 메커니즘의 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.440-449
    • /
    • 2009
  • LCM test is one of the most powerful and reliable methods of experiment for the cutter head design and the performance prediction of TBM. In many cases, however, the predicted design model can be directly applied to the field design, because this test may have an uppermost limit in preparation and/or transportation of the large size rock samples and the test for the jointed rock mass is not easy. When the proper and reasonable numerical modeling is considered to overcome this limit, the most adequate cutter head design for TBM could be presented without any complicate preconsideration in the field. In this study, the crack propagation patterns dependent on the contact point of disc cutter and the angle of rock joint are analyzed for the rock specimen with a single joint using the UDEC. The authors could derive the appropriate contact points of disc cutters and their space with respect to the joint angle in rock mass thru the numerical analysis.

Linear cutting machine test for assessment of the cutting performance of a pick cutter in sedimentary rocks (퇴적층 암석의 픽 커터 절삭성능 평가를 위한 선형절삭시험)

  • Jeong, Hoyoung;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.161-182
    • /
    • 2018
  • We carried out a series of linear cutting machine tests to assess the cutting performance of a pick cutter in sedimentary rock. The specimens were Linyi sandstone from China and Concrete (rock-like material, conglomerate). Using the small scaled LCM system, we estimated the cutter force and specific energy under different cutting conditions. The cutter forces (cutting and normal) increased with penetration depth and cutter spacing in two rock types, and it was affected by the strength of specimens. On the other hand, the ratio of the peak cutter force to the mean cutter force was influenced by cutting characteristic and composition of rock rather than rock strength. The cutting coefficient was affected by the friction characteristic between rock and pick cutter rather than the cutting conditions. Therefore, the optimal cutting angle can be determined by considering of cutting coefficient and resultant force of pick cutter. The optimum cutting condition was determined from the relationship between the specific energy and cutting condition. For two specimens, the optimum s/p ratio was found to be two to four, and the specific energy decreased with the penetration depth. The result from this study can be used as background database to understand the cutting mechanism of a pick cutter, also it can be used to design for the mechanical excavator.

A study on the wear and replacement characteristics of the disc cutter through data analysis of the large diameter slurry shield TBM field (대구경 이수식 쉴드TBM 현장의 데이터 분석을 통한 디스크커터의 마모 및 교체 특성 연구)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.57-78
    • /
    • 2022
  • The disc cutter and cutterbit, which are the most important factors to increase the excavation efficiency of TBM, are key factors in the design and construction of the cutter head. The arrangement, spacing, number, size, and material of disc cutters suitable for the ground conditions determine the success or failure of TBM construction. The disc cutter, which is a representative consumable part in TBM construction, can cause enormous disruption to the construction cost as well as the construction cost unless accurate prediction of wear and replacement cycle is accompanied. Therefore, in this study, the method of calculating the replacement cycle of the disc cutter calculated at the time of design for the slurry shield TBM field, and the depth of wear and replacement location of the disc cutter that occurred during actual construction were compared by analyzing the field data. For a quantitative comparison, weathered soil/weathered rock, soft rock, and hard rock were classified according to the ground in the section showing constant excavation data, and the trajectory of circle was different depending on the location of the disc cutter, so it was compared and analyzed.

Contribution Assessment of Roadheader Performance Indexes by Analysis of Variance (분산분석을 이용한 로드헤더 절삭시험 입출력 인자 간의 기여도 조사)

  • Mun-Gyu, Kim;Chang-Heon, Song;Joo-Young, Oh;Jung-Woo, Cho
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.386-396
    • /
    • 2022
  • To analyze the influence of variables of roadheaders, the linear cutting testing data of pick cutter were collected from the former literatures. The input factors were set up as uniaxial compressive strength, cutting depth, cutting spacing, attack angle, skew angle, and output factors were determined as specific energy, average cutting force, maximum cutting force, average vertical force, and maximum vertical force. After composing a table of the design of experiment (DOE). The contribution level of each factor was calculated by analysis of variance (ANOVA). As a result, the factors having greatest influence on cutting force and specific energy were uniaxial compressive strength and cutting spacing.

Prediction of the optimum cutting condition of TBM disc cutter in Korean granite by the linear cutting test (선형절삭시험에 의한 TBM 디스크 커터의 최적 절삭조건 예측)

  • Park, Gwan-In;Jang, Su-Ho;Choe, Sun-Uk;Jeon, Seok-Won
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.03a
    • /
    • pp.217-236
    • /
    • 2006
  • In this study, the LCM was applied as the preliminary study for the cutterhead design of TBM and the drilling performance evaluation. The optimum cutting condition is obtained from the LCM tests and the effects of the design factors of IBM cutterhead, such as penetration depth and cutter spacing, on drilling performance are estimated. In this study, hence, to predict the accurate performance of TBM, instead of one-dimensional penetration depth applied in existing studies, three-dimensional cutting volume was quantified and measured. For this, the digital photogrammetry technique was applied to the LCM tests. Also, AUTODYN 2D was applied to investigate the applicability of the numerical analysis technique to simulate the cutting process of rock by the TBM disc cutter.

  • PDF