Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.123-125
/
2022
Git의 커밋 메시지는 프로젝트가 진행되면서 발생하는 각종 이슈 및 코드의 변경이력을 저장하고 관리하고 있기 때문에 소프트웨어 유지관리와 프로젝트의 생명주기와 밀접한 연관성을 갖고 있다. 이러한 Git의 커밋 메시지에 대한 정확한 분석 결과는 소프트웨어 개발 및 유지관리 활동 시, 시간과 비용의 효율적인 관리에 많은 영향을 끼치고 있다. 이에 대한 기존 연구로 Git에서 발생하는 커밋 메시지를 소프트웨어 유지관리의 세 가지 형태로 분류하고 매핑하여 정확한 분석을 시도하려는 연구가 진행되었으나, 최대 87%의 정확도를 제시한 연구 결과가 있었다. 이러한 연구들은 정확도가 낮아 실제 프로젝트의 개발 및 유지관리에 적용하기에는 위험성과 어려움이 있는 현실이다. 본 논문에서는 커밋 메시지 분류에 대한 선행 연구 조사를 통해 각 연구들의 프로세스와 특징을 추출하였고, 이를 이용한 분류 정확도를 높일 수 있는 커밋 복합 분류 모델에 대해 제안한다.
Ji-Hoon Choi;Jae-Woong Kim;Youn-Yeoul Lee;Yi-Geun Chae;Hyeon-Ho Seo
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.81-83
/
2023
GIT의 커밋 메시지를 소프트웨어 유지보수 활동 세 가지로 분류하는 연구를 분석하고 정확도를 높일 수 있는 모델들을 분석하였고 관련 모델 중 커밋메시지와 변경된 소스를 같이 활용하는 연구들은 변경된 소스를 분석하기 위해 도구들을 대부분 활용하는데 대부분 특정 언어만 분류할 수 있는 한계가 있다. 본 논문에서는 소스 변경 데이터를 추출할 때 언어의 제약을 없애기 위해 GPT를 이용해 변경된 소스의 요약을 추출하는 과정을 추가함으로써 언어 제약의 한계를 극복할 수 있는 개선된 모델에 관한 연구를 진행하였다. 향후 본 연구 모델의 구현 및 검증을 진행하고 이를 이용해 프로젝트 진행에 활용할 수 있는 솔루션 개발 연구까지 확정해 나갈 예정이다.
Journal of the Korea Society of Computer and Information
/
v.27
no.11
/
pp.131-138
/
2022
Git's commit message is closely related to the project life cycle, and by this characteristic, it can greatly contribute to cost reduction and improvement of work efficiency by identifying risk factors and project status of project operation activities. Among these related fields, there are many studies that classify commit messages as types of software maintenance, and the maximum accuracy among the studies is 87%. In this paper, the purpose of using a solution using the commit classification model is to design and implement a complex classification model that combines several models to increase the accuracy of the previously published models and increase the reliability of the model. In this paper, a dataset was constructed by extracting automated labeling and source changes and trained using the DistillBERT model. As a result of verification, reliability was secured by obtaining an F1 score of 95%, which is 8% higher than the maximum of 87% reported in previous studies. Using the results of this study, it is expected that the reliability of the model will be increased and it will be possible to apply it to solutions such as software and project management.
'Commit-bug link', the link between commit history and bug reports, is used for software maintenance and defect prediction in bug tracking systems. Previous studies have shown that the links are automatically detected based on text similarity, time interval, and keyword. Existing approaches depend on the quality of commit history and could thus miss several links. In this paper, we proposed a technique to link commit and bug report using not only messages of commit history, but also the similarity of files in the commit history coupled with bug reports. The experimental results demonstrated the applicability of the suggested approach.
Journal of the Korea Society of Computer and Information
/
v.28
no.10
/
pp.123-132
/
2023
Git's commit messages manage the history of source changes during project progress or operation. By utilizing this historical data, project risks and project status can be identified, thereby reducing costs and improving time efficiency. A lot of research related to this is in progress, and among these research areas, there is research that classifies commit messages as a type of software maintenance. Among published studies, the maximum classification accuracy is reported to be 95%. In this paper, we began research with the purpose of utilizing solutions using the commit classification model, and conducted research to remove the limitation that the model with the highest accuracy among existing studies can only be applied to programs written in the JAVA language. To this end, we designed and implemented an additional step to standardize source change data into natural language using GPT. This text explains the process of extracting commit messages and source change data from Git, standardizing the source change data with GPT, and the learning process using the DistilBERT model. As a result of verification, an accuracy of 91% was measured. The proposed model was implemented and verified to ensure accuracy and to be able to classify without being dependent on a specific program. In the future, we plan to study a classification model using Bard and a management tool model helpful to the project using the proposed classification model.
Code refactoring refers to a maintenance task to change the code of a software system in order to consider new requirements, fix bugs, and restructure code. There have been various studies of refactoring subjects such as refactoring types, refactoring benefits, and CASE tools. However, Java applications rather than python ones have been benefited by refactoring-based coding practices. There are few cases of refactoring stuides on Python applications. This paper finds and analyzes single refactoring operations and composite refactoring operations for Python-based deep learning systems. In addition, we find that there is a statistically significant difference in the frequency of occurrence of single and complex refactoring operations in the two groups of deep learning applications and typical Python applications. Furthermore, we analyze keywords of commit messages to catch refactoring intentions of software developers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.