• Title/Summary/Keyword: 커먼레일직접분사

Search Result 38, Processing Time 0.023 seconds

Hydraulic Modal Analysis of High-Pressure Common-rail Fuel Injection System for Passenger Vehicle (승용 CR 연료분사시스템에 대한 유압 Modal 분석)

  • Sung, Gisu;Kim, Sangmyeong;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • Recently, R&D demand for environmental friendly vehicle has rapidly increased due to its global environmental issues such as global warming, energy and economic crisis. Under this situation, the most realistic alternative way for environmental friendly vehicle is a clean diesel vehicle. The common-rail fuel injection system, as key technology of clean diesel vehicle, consists of a high pressure pump, common-rail, high pressure fuel line and electronic control injector. In common-rail high-pressure fuel injection system, high pressure wave of injection system and geometry of injector elements have a major effects on high-pressure fuel spray. Therefore, in this study, the numerical model was developed for analysis about the common-rail fuel pressure pulsation by using AMESim code. We could secure stability of common-rail high-pressure fuel injection system through optimal design of fuel line.

Verification and Hydraulic Model Development of 3rd Generation Piezo Injector for CRDi System in Passenger Vehicle (승용CRDi용 3세대 피에조 인젝터 유압해석모델 개발 및 검증)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.181-187
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to its emission characteristics and fuel consumption. In this study, numerical model of 3rd generation piezo-driven injector was designed to analyze the hydraulic performance. Also the injection response characteristics was investigated by using the AMESim simulation code. From this study, it was shown that 3rd generation piezo-driven injector had a faster response and had better control capability due to its hydraulic bypass-circuit that has potential to higher hydraulic characteristics and improved accuracy of injected fuel quantity.

An Investigation for 2-stage Injection Strategy on Combustion and Emissions in a D.I Compression-ignition Engine Fueled with DME (직접분사식 압축착화엔진에서 DME의 2단 분사전략에 따른 엔진연소 및 배기특성에 관한 연구)

  • Jeong, Jae-Hoon;Jung, Dong-Won;Lim, Ock-Taek;Pyo, Young-Duck;Lee, Young-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.45-51
    • /
    • 2012
  • This work was investigated 2-stage injection strategy on combustion and emissions in a direct injection compression-ignition engine fueled with DME. Single cylinder engine was equipped with common rail. Injection pressure was 700bar, dSOI between the main injection and the pilot injection was varied. Diesel was used as compared fuel of DME in all cases. The results was shown that maximum pressure was higher than all cases and its amount of DME and diesel was similar. Regardless the pilot injection, the main fuel injection timing was same. The heat release rate of the main injection for diesel was high while that of pilot injection for DME was high. The THC was very low regardless of the fuel type and injection strategy. In the single injection, NOx was increased to retard of main injection timing regardless of the fuel type. NOx emissions was decreased with the retardation of the main injection timing regardless of the fuel type in the case of 2-stage injection strategy.

Diesel Combustion Strategies Effect on Exhaust Emissions and Hydrocarbon Species (디젤 연소 전략에 따른 배기가스 및 탄화수소 종 분석)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.759-765
    • /
    • 2012
  • This study investigates the effect of diesel combustion strategies on exhaust emissions and hydrocarbon species emissions for a 1.7 L common rail direct injection diesel engine at 1500 rpm and 3.9 bar BMEP. The first strategy is a method to adopt no EGR with a split injection composed of pilot and main injection (split injection). The second is to adopt a moderate EGR rate with main injection only (single-1). The third is to use a high level of EGR and main injection with rail pressure increase, $i.e.$ low-temperature diesel combustion (single-2). Split injection and single-1 showed a renowned phenomenon of a PM-NOx trade-off, whereas single-2 was observed of a PM-NOx trade-off to reduce PM and NOx simultaneously. HC speciation results show that the split injection produced the least amount of HC species, regardless of the carbon number bin, followed by single-1 and single-2. The ratios of methane, acetylene, and CO to THC increased as a combustion A/F ratio is richer due to reduced oxygen content in the vicinity of the combustion zone, thus enhancing pyrolysis.

Combustion and Emission Characteristics of 4 Cylinder Common-Rail DI Diesel Engine with Biodiesel Blended Fuel (4 실린더 직접분사식 디젤엔진에서 바이오디젤 혼합연료의 연소 및 배기특성)

  • Lee, Dong-Gon;Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • This paper describes the effects of biodiesel blended fuel on the engine combustion and emission characteristics in a four cylinder CRDI(Common-rail direct injection) diesel engine. In this work, the biodiesel-diesel blended fuel(20% of biodiesel and 80% of ULSD(ultra low sulfur diesel) by volume ratio, BD20) and ULSD fuel are used under the various injection pressures and engine speeds. The experimental results of BD20 and ULSD fuel show that NOx emissions were increased and soot emissions were decreased with the increase of injection pressure. In particular, NOx emissions were slightly increased for the BD20 fuel, however, soot emissions were significantly reduced compared to the ULSD fuel. When the engine speed is increased from 1000rpm to 2000rpm, NOx emissions are decreased at all tested conditions, and soot emissions are largely increased at lower injection pressure.

Cylinder Pressure based Real-Time IMEP Estimation of Diesel Engines (실린더 압력을 이용한 디젤엔진의 실시간 IMEP 추정)

  • Kim, Do-Hwa;Oh, Byoung-Gul;Ok, Seung-Suk;Lee, Kang-Yoon;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.118-125
    • /
    • 2009
  • Calculation of indicated mean effective pressure(IMEP) requires high cylinder pressure sampling rate and heavy computational load. Because of that, it is difficult to implement in a conventional electronic control unit. In this paper, a cylinder pressure based real-time IMEP estimation method is proposed for controller implementation. Crank angle at 10-bar difference pressure($CA_{DP10}$) and cylinder pressure difference between $60^{\circ}$ ATDC and $60^{\circ}$ BTDC($DP_{deg}$) are used for IMEP estimation. These pressure variables can represent effectively start of combustion(SOC) and fuel injection quantity respectively. The proposed IMEP estimation method is validated by transient engine operation using a common-rail direct injection diesel engine.

Analysis of Hydraulic Characteristics of High Pressure Injector with Piezo Actuator (피에조 액츄에이터 적용 고압 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.164-173
    • /
    • 2006
  • In the electro-hydraulic injector for the common rail Diesel fuel injection system, the injection nozzle is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the piezo actuator was considered as a prime movers in high pressure Diesel injector. Namely a piezo-driven Diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component(injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results. As this research results, we found that the input voltage exerted on piezo stack is the dominant factor which affects on the initial needle behavior of piezo-driven injector than the hydraulic force generated by the constant injection pressure. Also we know the piezo-driven injector has more degrees of freedom in controlling the injection rate with the high pressure than a solenoid-driven injector.

Effect of EGR Rate on Combustion and Emission Characteristics in a Single-cylinder Direct Injection Diesel Engine with Common-rail (직접분사식 커먼레일 단기통 디젤엔진에서 EGR율에 따른 연소 및 배기특성)

  • Heo, Jeong-Yun;Cha, June-Pyo;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.20-25
    • /
    • 2011
  • The purpose of this work is an experimental investigation of combustion and emission characteristics in DI diesel engine applied high EGR rate as a method of low-temperature combustion. In order to analyze the effect of EGR rate variation, a single-cylinder DI diesel engine was operated under various EGR rate conditions. In addition, injection timing was variously controlled to investigate the effect of injection timing in DI diesel engine using the cooled-EGR system. The NOx emissions were decreased in accordance with the increase of EGR rate. On the contrary, soot emissions were generally increased under applied EGR conditions. However, soot emissions were decreased in a few injection timings under high EGR rate conditions. The EGR results show that the ignition delay were increased by decreased oxygen concentrations in combustion chamber under the high EGR rate.

Comparison Analysis of Dynamic Characteristics of Servo-hydraulic Piezo-driven Injector between 3-way and Bypass-circuit Type (3-way형과 Bypass형 서보유압 피에조 인젝터의 구동특성 비교)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.169-175
    • /
    • 2013
  • CRDi technology of diesel engine was developed from in the early 2000s due to a need to increase fuel efficiency and environment care. Especially, high-pressure fuel injection system in CRDi system which has a fuel injection unit including an injector, a fuel pump and common-rail, etc. becomes possible to make the exhaust gas clean as well as power improvement. In this study, comparison of dynamic characteristics of servo-hydraulic piezo-driven injector with 3-way and bypass-circuit type was analyzed by using the AMESim code. As results of this study, it found the bypass-circuit inside servo-hydraulic piezo injector can cause a faster injection response than that of the 3-way type. Also it was shown that bypass-circuit type had better control capability due to hydraulic bypass system.

Analysis of Sensitivity Characteristics with AMESim Model for Piezo Injector (AMESim기반 피에조 인젝터용 해석모델의 민감도 특성 해석)

  • Jo, Insu;Kwon, Jiwon;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to the emission characteristics and fuel consumption. At present, diesel injection system with piezo element is replacing conventional solenoid type due to their faster electro-mechanical properties. In this study, it was investigated the sensitivity characteristics regarding internal hydraulic modeling based on the AMESim environment of piezo-driven injector The analytic parameter for this study defined such as In/Out orifice, injection hole's diameter and driven voltage on piezo stack. As the results, it was shown that these parameter influence on a fast response characteristics of piezo-driven injector. Also we found fuel pressure recovery time is faster about 0.1 ms due to larger IN orifice diameter. And larger OUT orifice diameter occurs maximum pressure drop with faster its timing of about 0.2 ms.