• Title/Summary/Keyword: 커널 분류기

Search Result 40, Processing Time 0.025 seconds

Multi-target Classification Method Based on Adaboost and Radial Basis Function (아이다부스트(Adaboost)와 원형기반함수를 이용한 다중표적 분류 기법)

  • Kim, Jae-Hyup;Jang, Kyung-Hyun;Lee, Jun-Haeng;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.22-28
    • /
    • 2010
  • Adaboost is well known for a representative learner as one of the kernel methods. Adaboost which is based on the statistical learning theory shows good generalization performance and has been applied to various pattern recognition problems. However, Adaboost is basically to deal with a two-class classification problem, so we cannot solve directly a multi-class problem with Adaboost. One-Vs-All and Pair-Wise have been applied to solve the multi-class classification problem, which is one of the multi-class problems. The two methods above are ones of the output coding methods, a general approach for solving multi-class problem with multiple binary classifiers, which decomposes a complex multi-class problem into a set of binary problems and then reconstructs the outputs of binary classifiers for each binary problem. However, two methods cannot show good performance. In this paper, we propose the method to solve a multi-target classification problem by using radial basis function of Adaboost weak classifier.

Solving Multi-class Problem using Support Vector Machines (Support Vector Machines을 이용한 다중 클래스 문제 해결)

  • Ko, Jae-Pil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1260-1270
    • /
    • 2005
  • Support Vector Machines (SVM) is well known for a representative learner as one of the kernel methods. SVM which is based on the statistical learning theory shows good generalization performance and has been applied to various pattern recognition problems. However, SVM is basically to deal with a two-class classification problem, so we cannot solve directly a multi-class problem with a binary SVM. One-Per-Class (OPC) and All-Pairs have been applied to solve the face recognition problem, which is one of the multi-class problems, with SVM. The two methods above are ones of the output coding methods, a general approach for solving multi-class problem with multiple binary classifiers, which decomposes a complex multi-class problem into a set of binary problems and then reconstructs the outputs of binary classifiers for each binary problem. In this paper, we introduce the output coding methods as an approach for extending binary SVM to multi-class SVM and propose new output coding schemes based on the Error-Correcting Output Codes (ECOC) which is a dominant theoretical foundation of the output coding methods. From the experiment on the face recognition, we give empirical results on the properties of output coding methods including our proposed ones.

Fault Classification of Induction Motors by k-NN and SVM (k-NN과 SVM을 이용한 유도전동기 고장 분류)

  • Park, Seong-Mu;Lee, Dae-Jong;Gwon, Seok-Yeong;Kim, Yong-Sam;Jun, Myeong-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.109-112
    • /
    • 2006
  • 본 논문에서는 PCA에 의한 특징추출과 k-NN과 SVM에 기반을 계층구조의 분류기에 의한 유도전동기의 고장진단 알고리즘을 제안한다. 제안된 방법은 k-NN에 의해 선형적으로 분류 가능한 고장패턴을 분류한 후, 분류가 되지 않는 부분을 커널 함수에 의해 고차원 공간으로 입력패턴을 매핑한 후 SVM에 의해 고장을 진단하는 계층구조를 갖는다. 실험장치를 구축한 후, 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.

  • PDF

Predicting Defect-Prone Software Module Using GA-SVM (GA-SVM을 이용한 결함 경향이 있는 소프트웨어 모듈 예측)

  • Kim, Young-Ok;Kwon, Ki-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • For predicting defect-prone module in software, SVM classifier showed good performance in a previous research. But there are disadvantages that SVM parameter should be chosen differently for every kernel, and algorithm should be performed iteratively for predict results of changed parameter. Therefore, we find these parameters using Genetic Algorithm and compare with result of classification by Backpropagation Algorithm. As a result, the performance of GA-SVM model is better.

Mutual Information in Naive Bayes with Kernel Density Estimation (나이브 베이스에서의 커널 밀도 측정과 상호 정보량)

  • Xiang, Zhongliang;Yu, Xiangru;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.86-88
    • /
    • 2014
  • Naive Bayes (NB) assumption has some harmful effects in classification to the real world data. To relax this assumption, we now propose approach called Naive Bayes Mutual Information Attribute Weighting with Smooth Kernel Density Estimation (NBMIKDE) that combine the smooth kernel for attribute and attribute weighting method based on mutual information measure.

  • PDF

Handwritten Numeral Recognition using Composite Features and SVM classifier (복합특징과 SVM 분류기를 이용한 필기체 숫자인식)

  • Park, Joong-Jo;Kim, Tae-Woong;Kim, Kyoung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2761-2768
    • /
    • 2010
  • In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by projection runlength, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our feature sets was tested by recognition experiments on the handwritten numeral database CENPARMI, where we used SVM with RBF kernel as a classifier. The experimental results showed that each combination of two or three features gave a better performance than a single feature. This means that each single feature works with a different discriminating power and cooperates with other features to enhance the recognition accuracy. By using the composite feature of the three features, we achieved a recognition rate of 98.90%.

딥러닝 기반 비디오 프레임 보간 기술 연구 동향

  • Heo, Jin-Gang;Yun, Gi-Hwan;Kim, Seong-Je;Jeong, Jin-U
    • Broadcasting and Media Magazine
    • /
    • v.27 no.2
    • /
    • pp.51-61
    • /
    • 2022
  • 비디오 프레임 보간 기술은 연속되어 있는 두 개의 프레임 사이의 중간 프레임을 생성하는 기술로 비디오의 프레임율을 늘리거나 슬로우 모션 영상을 생성 시 사용된다. 최근 딥러닝 기술의 발전에 따라 다양한 알고리즘의 비디오 프레임 보간 기술이 연구되고 있다. 본 고에서는 이러한 기알고리즘들을 커널 기반 방식과 플로우 기반 방식으로 분류하고, 각 범주에 속하는 대표적인 알고리즘들의 특징 및 한계점에 대해 살펴본다.

Learning and Performance Comparison of Multi-class Classification Problems based on Support Vector Machine (지지벡터기계를 이용한 다중 분류 문제의 학습과 성능 비교)

  • Hwang, Doo-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.1035-1042
    • /
    • 2008
  • The support vector machine, as a binary classifier, is known to surpass the other classifiers only in binary classification problems through the various experiments. Even though its theory is based on the maximal margin classifier, the support vector machine approach cannot be easily extended to the multi-classification problems. In this paper, we review the extension techniques of the support vector machine toward the multi-classification and do the performance comparison. Depending on the data decomposition of the training data, the support vector machine is easily adapted for a multi-classification problem without modifying the intrinsic characteristics of the binary classifier. The performance is evaluated on a collection of the benchmark data sets and compared according to the selected teaming strategies, the training time, and the results of the neural network with the backpropagation teaming. The experiments suggest that the support vector machine is applicable and effective in the general multi-class classification problems when compared to the results of the neural network.

  • PDF

Convergence performance comparison using combination of ML-SVM, PCA, VBM and GMM for detection of AD (알츠하이머 병의 검출을 위한 ML-SVM, PCA, VBM, GMM을 결합한 융합적 성능 비교)

  • Alam, Saurar;Kwon, Goo-Rak
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.1-7
    • /
    • 2016
  • Structural MRI(sMRI) imaging is used to extract morphometric features after Grey Matter (GM), White Matter (WM) for several univariate and multivariate method, and Cerebro-spinal Fluid (CSF) segmentation. A new approach is applied for the diagnosis of very mild to mild AD. We propose the classification method of Alzheimer disease patients from normal controls by combining morphometric features and Gaussian Mixture Models parameters along with MMSE (Mini Mental State Examination) score. The combined features are fed into Multi-kernel SVM classifier after getting rid of curse of dimensionality using principal component analysis. The experimenral results of the proposed diagnosis method yield up to 96% stratification accuracy with Multi-kernel SVM along with high sensitivity and specificity above 90%.

Priority-Based Network Protocol Processing for OS-Level QoS Provisioning (운영체제 수준에서 QoS를 보장하기 위한 우선순위 기반 네트워크 프로토콜 처리)

  • Kim, Dong-Soo;Byun, Jae-Hee;Ryu, Min-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1773-1776
    • /
    • 2005
  • 본 논문에서는 운영체제 측면에서 QoS를 보장하기 위해 우선순위 기반의 네트워크 프로토콜 처리 기법을 제안한다. 제안된 기법에서는 우선순위에 따라 네트워크 패킷을 분류하고 프로토콜을 처리한다. 이를 위해 패킷분류기(Packet Classifier)와 프로토콜엔진(Protocol Engine)을 포함하는 QPF(QoS Provisioning Framework)를 설계하고 리눅스 커널 내부에 구현하였다. 과거의 인터럽트 기반의 방식에서는 네트워크 패킷이 선착순(first-in first-out)으로 처리되어 응용 프로그램에서 요구하는 QoS를 보장하기 어려우며, 또한 항상 네트워크 패킷의 처리가 응용 프로그램보다 우선적으로 처리되어 수신교착상태(Receive Livelock) 등의 문제가 발생한다. 본 논문에서 제안하는 QPF는 네트워크 패킷을 우선순위에 따라 처리함은 물론 네트워크 처리에 사용되는 CPU 시간을 조절할 수 있어 위와 같은 문제를 효과적으로 해결할 수 있다.

  • PDF