• Title/Summary/Keyword: 캔트

Search Result 26, Processing Time 0.018 seconds

A Study on the Assessment of Running Safety of Railway Vehicle passing through Curve (곡선부 통과 열차의 주행안전성 평가에 관한 연구)

  • Park, Kwang-Soo;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.492-498
    • /
    • 2007
  • For the running safety assessment of Saemaul train passing through curves, an analysis model for multibody system has been developed. By using this model and ADAMS/Rail, sensitivity analyses depending on the variation of parameters related to the derailment coefficients have been conducted. At low speed, the derailment coefficient and the unload ratio of right wheel showed higher than left wheel, while those of left wheel showed higher than right wheel at high speed. According to decrease of curve radius, the derailment coefficient and the unload ratio were increased. When the length of transition curve was increased, the derailment coefficient was increased but there was no change on the unload ratio. According to the increase of cant, the derailment coefficient and the unload rate were increased.

Estimation of the Roadbed Settlement and Bearing Capacity According to Radius of Curve and Cant in Railroad (철도의 곡선반경 및 캔트에 따른 노반의 침하 및 지지력 산정)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.29-38
    • /
    • 2007
  • The research on the track performance and stability of the tilting-train was performed and the settlement of the roadbed was estimated as the tilting train was being operated on the rail joint under the allowable velocity subjected to the track performance and the stability of the tilting-train. Since the impact on the continuous welded rail (CWR) induced by the tilting-train loading is different from the impact on the rail joint, it needs to investigate the settlement of the roadbed beneath the CWR. In this study, when the tilting-train is being operated on the CWR under the allowable velocity subjected to the track performance and the stability of the tilting-train, the settlement and bearing capacity of the roadbed beneath the CWR have been evaluated using numerical analysis and compared with those beneath the rail joint. The numerical results show that the settlements of the roadbed beneath CWR and rail joint are amount to 71.2% and 88.8% of the allowable settlement, respectively. And the stresses are amount to 10.4% and 12.1% of the allowable bearing capacity, respectively.

A Study on Optimal Horizontal Alignment Design for PRT Vehicle (PRT 주행선로 최적평면선형 설계에 관한 연구)

  • Um, Ju-Hwan;Kim, Baek-Hyun;Jeong, Rag-Gyo;Kang, Seok-Won;Byun, Yeun-Sub
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.283-289
    • /
    • 2014
  • Personal rapid transit(PRT) systems have been highlighted in future transportation developments as a result of their potential as sustainable and eco-friendly transport solutions that provide demand-responsive mobility services. One of the most important characteristics of the personal rapid transit system(PRT) is that it can be constructed and operated at a low cost. A fundamental study on the alignment of the PRT guideway considering running stability was conducted in the present study. In addition, a parameter analysis of the major alignment design variables such as curve radius, transition curve length and cant was performed by vehicle dynamic analysis and optimum guideway alignments were proposed. The analysis results suggested that the theoretical values were satisfied and also confirmed the possibility of reducing the standard.

Evaluation of Optimal Horizontal Alignment Considering Ride Comfort in Renewal of Curved Tracks (곡선부 선형개량 시 승차감을 고려한 최적평면선형 평가)

  • Um, Ju-Hwan;Choi, Il-Yoon;Lee, Jun S.
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.457-465
    • /
    • 2015
  • A method of evaluating the optimal alignment range while considering ride comfort when performing line renewal of curved tracks for speed-up is proposed in this study. The proposed method was applied to analyze the optimal renewal range for horizontal alignments with the smallest curve radii in the Kyung-Bu high-speed line; a parametric study on the effects of various initial design conditions on the permissible renewal range and optimal alignment range was also performed. From the analysis results, it was found that the permissible range is enhanced in proportion to the increase in the curve radius and the cant. It was also verified that a slight adjustment of the horizontal alignment enables speed-up even in the case of R7000/R8000, placed in the ballasted track section of the Kyung-Bu high-speed line.

Study on the Behavior of Curved Track in Honam High-Speed Line considering the Running Performanace for HEMU 430-X (HEMU 430-X 주행특성을 고려한 호남고속철도 곡선궤도구조의 거동연구)

  • Kang, Yun-Suk;Um, Ki-Young;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.4068-4076
    • /
    • 2013
  • The wheel-rail interaction forces are influenced by the velocity of vehicle, wheel load, alignment (curve radius, cant etc). For the safety of track structure, it is required to evaluate the influences for track and influential factors. Recently, the HEMU 430-X, which was developed by Next Generation High-Speed Rail Development R&D Project, achieved 421.4km/h in a test run of Daegu.Busan section of the Gyeongbu high speed rail on March in 2013. In the case of additional speed-up test on Test-Bed Section(Gongju.Jeongeup: KP 100~128km Osong starting point), the analysis of track forces is required for outer rail by the increase of dynamic force and centrifugal force of vehicle. In this paper, the vehicle speed variation on HSL line is evaluated by TPS analysis considering the tractive effort of HEMU 430-X, tested running resistance and alignment of Honam HSR. And the track forces are evaluated by centrifugal force and impact factor on curved track.

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.