Aho-Corasick (AC) algorithm is a multiple patterns string matching algorithm commonly used in many applications with real-time performance requirements. In this paper, we parallelize the AC algorithm on the Intel's Many Integrated Core (MIC) Architecture, Xeon Phi Coprocessor. We propose a new technique to compress the Deterministic Finite Automaton structure which represents the set of pattern strings again which the input data is inspected for possible matches. The new technique reduces the cache misses and leads to significantly improved performance on Xeon Phi.
In this paper, we analyze the characteristics of machine learning workloads and, based on them, propose a distributed in-memory caching technique to improve the performance of machine learning workloads. The core of machine learning workload is model training, and model training is a computationally intensive task. Performing machine learning workloads in a Kubernetes-based cloud environment in which the computing framework and storage are separated can effectively allocate resources, but delays can occur because IO must be performed through network communication. In this paper, we propose a distributed in-memory caching technique to improve the performance of machine learning workloads performed in such an environment. In particular, we propose a new method of precaching data required for machine learning workloads into the distributed in-memory cache by considering Kubflow pipelines, a Kubernetes-based machine learning pipeline management tool.
인공지능 기술은 모든 분야에서 혁신을 이뤄내고 있다. 이와 동시에 인공지능 모델에 대한 여러 보안적인 문제점이 야기되고 있다. 그 중 대표적인 문제는 많은 인적/물적 자원을 통해 개발한 모델을 악의적인 사용자가 탈취하는 것이다. 모델 탈취가 발생할 경우, 경제적인 문제뿐만 아니라 모델 자체의 취약성을 드러낼 수 있다. 현재 많은 연구가 쿼리를 통해 얻는 모델의 입력과 출력을 분석하여 모델의 의사경계면 또는 모델의 기능성을 탈취하고 있다. 하지만 쿼리 기반의 탈취 공격은 획득할 수 있는 정보가 제한적이기 때문에 완벽한 탈취가 어렵다. 이에 따라 딥러닝 모델 연산 과정에서 데이터 스니핑 또는 캐시 부채널 공격을 통해 추가적인 정보 또는 완전한 모델을 탈취하려는 연구가 진행되고 있다. 본 논문에서는 최근 연구 동향과 쿼리 기반 공격과의 차이점을 분석하고 연구한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.16
no.4
/
pp.15-20
/
2016
Write amplification is a critical factor that limits the stable performance of flash-based storage systems. To reduce write amplification, this paper presents a new technique that cooperatively manages data in flash storage and nonvolatile memory (NVM). Our scheme basically considers NVM as the cache of flash storage, but allows the original data in flash storage to be invalidated if there is a cached copy in NVM, which can temporarily serve as the original data. This scheme eliminates the copy-out operation for a substantial number of cached data, thereby enhancing garbage collection efficiency. Experimental results show that the proposed scheme reduces the copy-out overhead of garbage collection by 51.4% and decreases the standard deviation of response time by 35.4% on average.
Journal of Korea Spatial Information System Society
/
v.6
no.1
s.11
/
pp.3-17
/
2004
With the rapid growth of the Internet geographic information services through the WWW such as a location-based service and so on. Web GISs (Geographic Information Systems) have also come to be a cluster-based architecture like most other information systems. That is, in order to guarntee high quality of geographic information service without regard to the rapid growth of the number of users, web GISs need cluster-based architecture that will be cost-effective and have high availability and scalability. This paper proposes the design of the cluster-based web GIS with high availability and scalability. For this, each node within a cluster-based web GIS consists of main memory spatial databases which accomplish role of caching by using data declustering and the locality of spatial query. Not only simple region queries but also the proposed system processed spatial join queries effectively. Compare to the existing method. Parallel R-tree spatial join for a shared-Nothing architecture, the result of simulation experiments represents that the proposed spatial join method achieves improvement of performance respectively 23% and 30% as data quantity and nodes of cluster become large.
Lee, Minhoe;Kang, Dong Hyun;Kim, Junghoon;Eom, Young Ik
KIISE Transactions on Computing Practices
/
v.21
no.1
/
pp.88-93
/
2015
In modern computer systems, DRAM is commonly used as main memory due to its low read/write latency and high endurance. However, DRAM is volatile memory that requires periodic power supply (i.e., memory refresh) to sustain the data stored in it. On the other hand, PCM is a promising candidate for replacement of DRAM because it is non-volatile memory, which could sustain the stored data without memory refresh. PCM is also available for byte-addressable access and in-place update. However, PCM is unsuitable for using main memory of a computer system because it has two limitations: high read/write latency and low endurance. To take the advantage of both DRAM and PCM, a hybrid main memory, which consists of DRAM and PCM, has been suggested and actively studied. In this paper, we propose a novel page replacement algorithm for hybrid main memory. To cope with the weaknesses of PCM, our scheme focuses on reducing the number of PCM writes in the hybrid main memory. Experimental results shows that our proposed page replacement algorithm reduces the number of PCM writes by up to 80.5% compared with the other page replacement algorithms.
Journal of the Korea Society of Computer and Information
/
v.15
no.8
/
pp.149-156
/
2010
As following the development of the USN technology, sensor node used in sensor network has capability of quick data process and storage to support efficient network configuration is enabled. In addition, tree-based structure was transformed to cluster in the construction of sensor network. However, query processing based on existing tree structure could be inefficient under the cluster-based network. In this paper, we suggest energy efficient query processing mechanism using filtering through data attribute classification in cluster-based sensor network. The suggestion mechanism use advantage of cluster-based network so reduce energy of query processing and designed more intelligent query dissemination. And, we prove excellence of energy efficient side with MATLab.
In this paper, we propose a query processing approach that uses the Spark functional programming and distributed memory system to solve the computational overhead of SPARQL. In the semantic web, RDF ontology data is produced at large scale, and the main challenge for the semantic web is to query and manipulate such a large ontology with a high throughput. The most existing studies on SPARQL have focused on deploying the Hadoop MapReduce framework, and although approaches based on Hadoop MapReduce have shown promising results, they achieve a low level of throughput due to the underlying distributed file processes. Therefore, in order to speed up the query processes, we suggest query- processing methods that are based on memory caching in distributed memory system. Our approach is also integrated with a clause unification method for propagating between the clauses that exploits Spark join, map and filter methods along with caching. In our experiments, we have achieved a high level of performance relative to other approaches. In particular, our performance was nearly similar to that of Sempala, which has been considered to be the fastest query processing system.
We present a novel multi-core CPU based parallel algorithm for the cell-connectivity information extraction algorithm, which is one of the preprocessing steps for volume rendering of unstructured grid data. We first check the synchronization issues when parallelizing the prior serial algorithm naively. Then, we propose a 3-step parallel algorithm that achieves high parallelization efficiency by removing synchronization in each step. Also, our 3-step algorithm improves the cache utilization efficiency by increasing the spatial locality for the duplicated triangle test process, which is the core operation of building cell-connectivity information. We further improve the efficiency of our parallel algorithm by employing a memory pool for each thread. To check the benefit of our approach, we implemented our method on a system consisting of two octa-core CPUs and measured the performance. As a result, our method shows continuous performance improvement as we add threads. Also, it achieves up to 82.9 times higher performance compared with the prior serial algorithm when we use thirty-two threads (sixteen physical cores). These results demonstrate the high parallelization efficiency and high cache utilization efficiency of our method. Also, it validates the suitability of our algorithm for large-scale unstructured data.
Traditional technologies that are used to improve the performance of hard disk drives show many negative cases if they are applied to solid state drives (SSD). Access time and block sequence in hard disk drives that consist of mechanical components are very important performance factors. Meanwhile, SSD provides superior random read performance that is not affected by block address sequence due to the characteristics of flash memory. Practically, it is recommended to disable prefetching if a SSD is installed in a personal computer. However, this paper presents a combinational method of a prefetching scheme and a memory management that consider the internal structure of SSD and the characteristics of NAND flash memory. It is important that SSD must concurrently operate multiple flash memory chips. The I/O unit size of NAND flash memory tends to increase and it exceeded the block size of operating systems. Hence, the proposed prefetching scheme performs in an operating unit of SSD. To complement a weak point of the prefetching scheme, the proposed memory management scheme adaptively evicts uselessly prefetched data to maximize the sum of cache hit rate and prefetch hit rate. We implemented the proposed schemes as a Linux kernel module and evaluated them using a commercial SSD. The schemes improved the I/O performance up to 26% in a given experiment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.