• Title/Summary/Keyword: 캐스케이드 냉동사이클

Search Result 14, Processing Time 0.022 seconds

Development of Cascade Refrigeration System Using R744 and R404A - Analysis on Performance Characteristics - (R744-R404A용 캐스케이드 냉동시스템 개발에 관한 연구(1) - 성능 특성에 관한 분석 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.182-188
    • /
    • 2011
  • In this paper, analysis on the performance characteristics of R744-R404A cascade refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in R404A high- and R744 low-temperature cycle, respectively. The main results were summarized as follows : It was observed that the highest COP of the system is achieved by higher superheating degree in R744 cycle than that in R404A cycle. The COP of the system increased by giving the subcooling degree in both cycles. The COP of the cascade system is the highest value when the system is operated at an optimum evaporation temperature.

Exergy Analysis of R744-R404A Cascade Refrigeration System (R744-R404A용 캐스케이드 냉동시스템의 엑서지 분석)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1001-1008
    • /
    • 2011
  • This paper describes an analysis on performance and exergy of R744-R404A cascade refrigeration system with internal heat exchanger to optimize the design for the operating parameters of this system. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporation and condensation temperature in the R744 low- and R404A high- temperature cycle, respectively. The main results are summarized as follows : As the evaporation temperature of cascade heat exchanger increases, the COP of R404A high-temperature cycle increases. But the COP of R744 low-temperature cycle decreases, and the COP of total cascade cycle is almost constant. As cascade evaporation temperature increase, the exergy loss in the R404A condenser and the R744 internal heat exchanger is the largest and the lowest among all components, respectively. Therefore, the exergy loss in the condenser and compressor of R404A must be decreased to enhance the COP of R744-R404A cascade refrigeration system.

Characteristics of Cryogenic Cascade Refrigeration Cycle for Liquefaction of Natural Gas with the Pressure Drop of Heat Exchanger (LNG 열교환기의 압력강하에 따른 천연가스 액화용 초저온 캐스케이드 냉동사이클 특성)

  • Yoon, Jung-In;Choi, Kwang-Hwan;Son, Chang-Hyo;Kwag, Jin-Woo;Baek, Seung-Moon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.756-761
    • /
    • 2012
  • Natural gas is converted in to LNG by chilling and liquefying the gas to the temperature of $-162^{\circ}C$, when liquefied, the volume of natural gas is reduced to 1/600 of its standard volume. This gives LNG the advantage in transportation. In this study, the effects of the pressure drop of refrigerant and natural gas in the LNG heat exchanger of cryogenic cascade refrigeration cycle were investigated and then the design criteria for the pressure drop of refrigerant and natural gas of the LNG heat exchanger were proposed. The pressure drop of the cascade liquefaction cycle was investigated and simulated using HYSYS software. The simulation results showed that the pressure drop in the LNG heat exchanger is set to 50 kPa considering the increase in the compressor work and COP of cryogenic cascade liquefaction cycle.

Mass flow rate ratio analysis for optimal refrigerant charge of a R744 and R404A cascade refrigeration system (R744-R404A 캐스케이드 냉동시스템의 최적 냉매 충전을 위한 질량유량비 분석)

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Jo, Hwan;Jeon, Min-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.575-581
    • /
    • 2013
  • In this paper, the influences of several factors, such as subcooling, superheating degree, internal heat exchanger efficiency, and etc. to the optimal amount of refrigerant charge are investigated for the case of R744-R404A cascade refrigeration system. Refrigerants used in the cascade refrigeration system are R404A in high temperature cycle and R744 in the low temperature cycle. The main results are summarized as follows : The mass flow rate ratio decreases with increasing subcooling, superheating degree and internal heat exchanger efficiency in the high temperature cycle, and evaporating temperature and compression efficiency in the low temperature cycle. And the mass flow rate ratio decreases with decreasing temperature difference of cascade heat exchanger and evaporating, condensing temperature in the high temperature cycle, and subcooling, superheating degree and internal heat exchanger efficiency in the low temperature cycle.

A Simulation Study on the Cascade Refrigeration Cycle for the Liquefaction of the Natural Gas [2]: An Application to the Multistage Cascade Refrigeration Cycle (천연가스 액화를 위한 캐스케이드 냉동사이클의 전산모사에 대한 연구 [2]: 다단 캐스케이드 냉동 사이클에 적용)

  • Cho, Jung-Ho;Kim, Yu-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1013-1019
    • /
    • 2011
  • In this paper, simulation works for a multi-stage cascade refrigeration cycle using propane, ethylene and methane as refrigerants have been performed for the liquefaction of natural gas using Peng-Robinson equation of state built-in PRO/II with PROVISION release 8.3. The natural gas feed compositions were supplied from Korea Gas Corporation and the flow rate was assumed to be 5.0 million tons per annual. Supply temperature for propane refrigerant was fixed as $-40^{\circ}C$, that for ethylene refrigerant as $-95^{\circ}C$, and that for methane refrigerant as $-155^{\circ}C$. For the multi-stage refrigeration cycle, three-stage refrigeration was assumed for propane refrigeration cycle, two-stage refrigeration for ethylene refrigeration cycle and three-stage refrigeration for methane refrigeration cycle. Natural gas was finally cooled and liquefied to $-162^{\circ}C$ by Joule-Thomson expansion. Conclusively, 91.71% by mole of the natural gas liquefaction ratio was obtained through a cascade refrigeration cycle and Joule-Thomson expansion and 0.433 kW of compression power was consumed for the liquefaction of 1.0 kg/hr of natural gas.

Analysis of Performance Characteristics of a Cascade Refrigeration System with Internal Heat Exchanger using Natural Refrigerants (천연냉매를 사용하는 내부 열교환기 부착 캐스케이드 냉동시스템의 성능 특성 분석)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1123-1128
    • /
    • 2009
  • In this paper, the cycle performance characteristics of a cascade refrigeration system with internal heat exchanger using natural refrigerants is presented to offer the basic design data for the operating parameters of the system. This system considered in this study is consisted of a high temperature cycle using a carbon dioxide(R744) and low temperature cycle using refrigerants such as R290, R1270, R600a and Ethane. The main results were summarized as follows : The COP of the cascade refrigeration system of R600a with internal heat exchanger is the highest grade in low temperature cycle using refrigerants such as R290, R1270, R600a and Ethane. The COP of the cascade refrigeration system with internal heat exchanger only in high temperature cycle is the highest value among three type cycle, such as only low temperature cycle, only high temperature cycle and all the cycle.

A Study on the Cascade Hybrid Cooling/Refrigeration Cycle Equipped With Intercooler and Air-Cooled Condenser in Series (인터쿨러와 공랭식 응축기를 동시에 사용하는 냉방-냉동 겸용 캐스케이드 사이클에 대한 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.353-362
    • /
    • 2019
  • Thermodynamic analysis of cascade refrigeration systems has attracted considerable research attention. On the other hand, a system evaluation based on thermodynamic analyses of the individual parts, including the evaporator, condenser, intercooler, expansion valve, etc., has received less attention. In this study, performance analysis was conducted on a cascade refrigeration system, which has an individual cooling and refrigeration evaporator, and equips the intercooler and air-cooled condenser in a series in a lower cycle. The thermo-fluid design was then performed on the major components of the system - upper condenser, lower condenser, cooling evaporator, refrigeration evaporator, intercooler, compressor, electronic expansion valve - of 15 kW refrigeration, and 8 kW cooling capacity using R-410A. A series of simulations were conducted on the designed system. The change in outdoor temperature from 26 C to 38 C resulted in the cooling capacity of the lower evaporator remaining approximately the same, whereas it decreased by 9% at the upper evaporator and by 63% at the intercooler. The COP decreased with increasing outdoor temperature. In addition, the COP of the cycle with the intercooler operation was higher that of the cycle without the intercooler operation. Furthermore, the increase in the upper condenser size by two fold increased the upper evaporator by 4%. On the other hand, the lower evaporator capacity remained the same. The COP of the upper cycle increased with increasing upper condenser size, whereas that of the lower cycle remained almost the same. When the size of the lower condenser was increased 2.8 fold, the intercooler capacity increased by 8%, whereas those of upper and the lower evaporator remained approximately the same. Furthermore, the COP of the lower cycle increased with an increase in the lower condenser. On the other hand, the change of the upper condenser was minimal.

Development of cascade refrigeration system using R744 and R404A - Prediction and comparison on maximum COP(Coefficient of Performance) - (R744-R404A용 캐스케이드 냉동시스템 개발에 관한 연구(2) - 최대 성능계수에 관한 예측과 비교 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.189-195
    • /
    • 2011
  • In this paper, prediction and comparison on COP(coefficient of performance) of R744-R404A cascade refrigeration system are presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in the R404A high- and R744 low-temperature cycle, respectively. The main results were summarized as follows : The prediction for performance of R744-R404A cascade refrigeration system have been proposed through multiple regression analysis and compared with other researcher's correlations. As a result, prediction proposed in the study shows disagreement with existing equations. Therefore, it is necessary to propose the more accurate correlation predicting the COP of R744-R404A cascade refrigeration system through an addition experiments.

The pressure drop characteristics in LNG heat exchanger of cryogenic cascade refrigeration cycle (초저온 캐스케이드 냉동사이클의 LNG 열교환기 압력강하 특성)

  • Yoon, J.I.;Choi, K.H.;Kwag, J.W.;Son, C.H.;Baek, S.M.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.376-381
    • /
    • 2012
  • Natural gas is converted in to LNG by chilling and liquefying the gas to the temperature of $-162^{\circ}C$, when liquefied, the volume of natural gas is reduced to 1/600th of its standard volume. This gives LNG the advantage in transportation. The pressure dorp of the cascade liquefaction cycle was investigated and simulated using HYSYS software. The simulation results showed that the pressure drop in the LNG heat exchanger is set to 50 kPa considering the increase in the compressor work of cryogenic cascade liquefaction cycle.

  • PDF

A Simulation Study on the Cascade Refrigeration Cycle for the Liquefaction of Natural Gas [1] (천연가스 액화를 위한 캐스케이드 냉동사이클의 전산모사에 대한 연구 [1])

  • Kim, So-Hee;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.552-558
    • /
    • 2011
  • In this paper, simulation works for a cascade refrigeration cycle using propane, ethylene and methane as a refrigerant have been performed for the liquefaction of natural gas using Peng-Robinson equation of state built-in PRO/II with PROVISION release 8.3. The natural gas feed compositions were supplied from Korea Gas Corporation and the flow rate was assumed to be 5.0 million tons per annual. Supply temperature for propane refrigerant was fixed as $-40^{\circ}C$, that for ethylene refrigerant as $-95^{\circ}C$, and that for methane refrigerant as $-155^{\circ}C$. Natural gas was finally cooled and liquefied to $-162^{\circ}C$ by Joule-Thomson expansion. Conclusively, 91.64% by mole of the natural gas liquefaction ratio was obtained through a cascade refrigeration cycle and Joule-Thomson expansion.