Journal of the Institute of Electronics Engineers of Korea SP
/
v.37
no.1
/
pp.49-58
/
2000
This paper presents a new color Image coding method which estimates color component Images from luminance image using spectral correlation m wavelet transformed domain More specifically, the wavelet transform is performed to the luminance image(Y), and then, for an efficient quad-tree division to encompass the varying block size, a cost function IS defined using high frequency coefficients generated by wavelet decomposition Next, a scale factor and an offset factor for each the block to minimize the estimation error between luminance image(Y) and R, B Images, are iteratively calculated With respect to the varying block size With associated cost function.
This paper presents an image retrieval algorithm based on feature vector using color of histogram refinement for a faster and more efficient search in the process of content based image retrieval. First, we segment each of R, G, and B images from RGB color image and extract their respective histograms. Secondly, these histograms of individual R, G and B are divided into sixteen of bins each. Finally, we extract the maximum pixel values in each bins' histogram, which are calculated, compared and analyzed, Now, we can perform image retrieval technique using these maximum pixel value. Hence, the proposed algorithm of this paper effectively extracts features by comparing input and database images, making features from R, G and B into a feature vector table, and prove a batter searching performance than the current algorithm that uses histogram matching and ranks, only.
본 논문은 퍼지논리를 통해 얻어지는 경계값을 이용한 영상분할법에 관한 연구이다. 영상분할은 퍼지인식의 핵심기술 및 많은 응용분야에서의 전처리과정에 사용되고 있어 그 중요성이 강조되고 있는 추세이다. 본 논문의 주요 관점은 영상의 그레이레블(gary level)에 관련된 불분명한 정보들을 퍼지논리를 기반으로 하여 자동적으로 경계값을 획득하는 새로운 영상 분할법을 제안함에 있다. 본 논문에서 제안된 영상분할법은 영상의 히스토그램을 이용하여 계산된 경계값과 불분명한 정도인 퍼지정보를 영상분할에 적용한 것이다. 제안된 알고리즘은 이론 및 실험을 통하여 증명하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2011.10a
/
pp.915-917
/
2011
In this paper, a comparison of superpixel characteristics for each color feature space. The superpixel is consist of several pixels with same features such as luminance, color, textures etc. The superpixel can be used on image processing and analysis with large image size to speed up the process. We compare the superpixel characteristics by means of compactness using Berkeley image database(BSD-300).
Proceedings of the Korea Contents Association Conference
/
2006.05a
/
pp.401-404
/
2006
Mean shift procedure is applied for the data points in the joint spatial-range domain and achieves a high quality. However, a color image is segmented differently according to the inputted spatial parameter or range parameter and the demerit is that the image is broken into many small regions in case of the small parameter. In this paper, to improve this demerit, we propose the method that groups similar regions using region merging method for over-segmented images. The proposed method converts a over-segmented image in RGB color space into in HSI color space and merges similar regions by hue information. Here, to preserve edge information, the proposed method use by merging constraints to decide whether regions is merged or not. After then, we merge the regions in RGB color space for non-processed regions in HSI color space. Experimental results show the superiority in region's segmentation results.
In this paper we present a novel color image segmentation algorithm based on a Gaussian Mixture Model(GMM). It is introduced a Deterministic Annealing Expectation Maximization(DAEM) algorithm which is developed using the principle of maximum entropy to overcome the local maxima problem associated with the standard EM algorithm. In our approach, the GMM is used to represent the multi-colored objects statistically and its parameters are estimated by DAEM algorithm. We also develop the automatic determination method of the number of components in Gaussian mixtures models. The segmentation of image is based on the maximum posterior probability distribution which is calculated by using the GMM. The experimental results show that the proposed DAEM can estimate the parameters more accurately than the standard EM and the determination method of the number of mixture models is very efficient. When tested on two natural images, the proposed algorithm performs much better than the traditional algorithm in segmenting the image fields.
This paper is related to color image segmentation scheme which makes it possible to achieve the excellent segmented results by block-based segmentation using Y/C bit-plane summation image. First, normalized chrominance summation image is obtained by normalizing the image which is summed up the absolutes of color-differential values between R, G, B images. Secondly, upper 2 bits of the luminance image and upper 6bits of and the normalized chrominance summation image are bitwise operated by the pixel to generate the Y/C bit-plane summation image. Next, the Y/C bit-plane summation image divided into predetermined block size, is classified into monotone blocks, texture blocks and edge blocks, and then each classified block is merged to the regions including one more blocks in the individual block type, and each region is selectively allocated to unique marker according to predetermined marker allocation rules. Finally, fine segmented results are obtained by applying the watershed algorithm to each pixel in the unmarked blocks. As shown in computer simulation, the main advantage of the proposed method is that it suppresses the over-segmentation in the texture regions and reduces computational load. Furthermore, it is able to apply global parameters to various images with different pixel distribution properties because they are nonsensitive for pixel distribution. Especially, the proposed method offers reasonable segmentation results in edge areas with lower contrast owing to the regional characteristics of the color components reflected in the Y/C bit-plane summation image.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.3
/
pp.383-391
/
2017
In image processing, image segmentation has been studied by various methods in a long time. Image segmentation is the process of partitioning a digital image into multiple objects and face detection is a typical image segmentation field being used in a variety of applications that identifies human faces in digital images. In this paper, we propose a method for extracting the contours of faces included in images. Using the Viola-Jones algorithm, to do this, we detect the approximate locations of faces from images. But, the Viola-Jones algorithm could detected the approximate location of face not the correct position. In order to extract a more accurate face region from image, we use skin color in this paper. In details, face region would be extracted using the analysis of horizontal and vertical histograms on the skin area. Finally, the face contour is extracted using snake algorithm for the extracted face area. In this paperr, a modified snake energy function is proposed for face contour extraction based snake algorithm proposed by Williams et al.[7]
Journal of the Institute of Electronics Engineers of Korea CI
/
v.46
no.3
/
pp.57-63
/
2009
The rapid growth of computer-based image database, necessity of a system that can manage an image information is increasing. This paper presents a region-based image retrieval method using the combination of color(autocorrelogram), texture(CWT moments) and shape(Hu invariant moments) features. As a color feature, a color autocorrelogram is chosen by extracting from the hue and saturation components of a color image(HSV). As a texture, shape and position feature are extracted from the value component. For efficient similarity confutation, the extracted features(color autocorrelogram, Hu invariant moments, and CWT moments) are combined and then precision and recall are measured. Experiment results for Corel and VisTex DBs show that the proposed image retrieval algorithm has 94.8% Precision, 90.7% recall and can successfully apply to image retrieval system.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.422-424
/
1999
본 논문에서는 질감 특징과 신경회로망을 이용한 유방암조직영상의 분할 방법을 제안한다. 신경회로망의 입력 노드에 사용될 질감 특징을 얻기 위해 10개의 영상에 대해 각 영역(양성세포핵, 음성세포핵, 배경)에서 10개씩의 화소를 선택하고, 그 화소를 중심으로 하는 5$\times$5 영역 30개를 획득, 총 300개의 영역에 대해 R, G, B 각각의 밴드에서 18개의 질감특징을 추출한다. 54개의 입력노드, 28개의 은닉노드, 3개의 출력노드의 구조를 가진 신경회로망을 구성하고, 역전파 학습 알고리즘을 사용하여 신경회로망을 최대오차율이 10-3보다 작을 때까지 학습시킨다. 학습에 의해 획득되어진 분류기를 이용하여 유방암 조직 세포영상을 양성세포핵, 음성세포핵, 배경부분으로 자동 분할한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.