• Title/Summary/Keyword: 칼라 영상 분할

Search Result 120, Processing Time 0.024 seconds

A Color Image Coding by Estimating Spectral Correlation Based on Wavelet Transform (웨이블렛 변환 기반 스펙트럴 상관성 추정에 의한 칼라 영상 부호화)

  • Kwak, No-Yoon;Jeong, Dae-Gwon;Hwang, Byong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.1
    • /
    • pp.49-58
    • /
    • 2000
  • This paper presents a new color Image coding method which estimates color component Images from luminance image using spectral correlation m wavelet transformed domain More specifically, the wavelet transform is performed to the luminance image(Y), and then, for an efficient quad-tree division to encompass the varying block size, a cost function IS defined using high frequency coefficients generated by wavelet decomposition Next, a scale factor and an offset factor for each the block to minimize the estimation error between luminance image(Y) and R, B Images, are iteratively calculated With respect to the varying block size With associated cost function.

  • PDF

Image retrieval algorithm based on feature vector using color of histogram refinement (칼라 히스토그램 정제를 이용한 특징벡터 기반 영상 검색 알고리즘)

  • Kang, Ji-Young;Park, Jong-An;Beak, Jung-Uk
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.376-379
    • /
    • 2008
  • This paper presents an image retrieval algorithm based on feature vector using color of histogram refinement for a faster and more efficient search in the process of content based image retrieval. First, we segment each of R, G, and B images from RGB color image and extract their respective histograms. Secondly, these histograms of individual R, G and B are divided into sixteen of bins each. Finally, we extract the maximum pixel values in each bins' histogram, which are calculated, compared and analyzed, Now, we can perform image retrieval technique using these maximum pixel value. Hence, the proposed algorithm of this paper effectively extracts features by comparing input and database images, making features from R, G and B into a feature vector table, and prove a batter searching performance than the current algorithm that uses histogram matching and ranks, only.

  • PDF

Color Image Segmentation Using Fuzzy-based Thresholding Method (그레이레블의 퍼지정보를 적용한 칼라영상분할법)

  • Kim, Dong-Jin;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2558-2560
    • /
    • 2003
  • 본 논문은 퍼지논리를 통해 얻어지는 경계값을 이용한 영상분할법에 관한 연구이다. 영상분할은 퍼지인식의 핵심기술 및 많은 응용분야에서의 전처리과정에 사용되고 있어 그 중요성이 강조되고 있는 추세이다. 본 논문의 주요 관점은 영상의 그레이레블(gary level)에 관련된 불분명한 정보들을 퍼지논리를 기반으로 하여 자동적으로 경계값을 획득하는 새로운 영상 분할법을 제안함에 있다. 본 논문에서 제안된 영상분할법은 영상의 히스토그램을 이용하여 계산된 경계값과 불분명한 정도인 퍼지정보를 영상분할에 적용한 것이다. 제안된 알고리즘은 이론 및 실험을 통하여 증명하였다.

  • PDF

A Comparison of Superpixel Characteristics for Color Feature Spaces (칼라특징공간별 슈퍼픽셀의 특성비교)

  • Lee, Jeong-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.915-917
    • /
    • 2011
  • In this paper, a comparison of superpixel characteristics for each color feature space. The superpixel is consist of several pixels with same features such as luminance, color, textures etc. The superpixel can be used on image processing and analysis with large image size to speed up the process. We compare the superpixel characteristics by means of compactness using Berkeley image database(BSD-300).

  • PDF

A Color Image Segmentation Using Mean Shift and Region merging method (Mean Shift와 영역병합을 이용한 칼라 영상 분할)

  • Kwak, Nae-Joung;Kwon, Dong-Jin;Kim, Young-Gil
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.401-404
    • /
    • 2006
  • Mean shift procedure is applied for the data points in the joint spatial-range domain and achieves a high quality. However, a color image is segmented differently according to the inputted spatial parameter or range parameter and the demerit is that the image is broken into many small regions in case of the small parameter. In this paper, to improve this demerit, we propose the method that groups similar regions using region merging method for over-segmented images. The proposed method converts a over-segmented image in RGB color space into in HSI color space and merges similar regions by hue information. Here, to preserve edge information, the proposed method use by merging constraints to decide whether regions is merged or not. After then, we merge the regions in RGB color space for non-processed regions in HSI color space. Experimental results show the superiority in region's segmentation results.

  • PDF

Segmentation of Color Image using the Deterministic Annealing EM Algorithm (결정적 어닐링 EM 알고리즘을 이요한 칼라 영상의 분할)

  • Cho, Wan-Hyun;Park, Jong-Hyun;Park, Soon-Young
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.324-333
    • /
    • 2001
  • In this paper we present a novel color image segmentation algorithm based on a Gaussian Mixture Model(GMM). It is introduced a Deterministic Annealing Expectation Maximization(DAEM) algorithm which is developed using the principle of maximum entropy to overcome the local maxima problem associated with the standard EM algorithm. In our approach, the GMM is used to represent the multi-colored objects statistically and its parameters are estimated by DAEM algorithm. We also develop the automatic determination method of the number of components in Gaussian mixtures models. The segmentation of image is based on the maximum posterior probability distribution which is calculated by using the GMM. The experimental results show that the proposed DAEM can estimate the parameters more accurately than the standard EM and the determination method of the number of mixture models is very efficient. When tested on two natural images, the proposed algorithm performs much better than the traditional algorithm in segmenting the image fields.

  • PDF

Block-based Color Image Segmentation Using Y/C Bit-Plane Sum]nation Image (Y/C 비트 평면합 영상을 이용한 블록 기반 칼라 영상 분할)

  • Kwak, No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 2000
  • This paper is related to color image segmentation scheme which makes it possible to achieve the excellent segmented results by block-based segmentation using Y/C bit-plane summation image. First, normalized chrominance summation image is obtained by normalizing the image which is summed up the absolutes of color-differential values between R, G, B images. Secondly, upper 2 bits of the luminance image and upper 6bits of and the normalized chrominance summation image are bitwise operated by the pixel to generate the Y/C bit-plane summation image. Next, the Y/C bit-plane summation image divided into predetermined block size, is classified into monotone blocks, texture blocks and edge blocks, and then each classified block is merged to the regions including one more blocks in the individual block type, and each region is selectively allocated to unique marker according to predetermined marker allocation rules. Finally, fine segmented results are obtained by applying the watershed algorithm to each pixel in the unmarked blocks. As shown in computer simulation, the main advantage of the proposed method is that it suppresses the over-segmentation in the texture regions and reduces computational load. Furthermore, it is able to apply global parameters to various images with different pixel distribution properties because they are nonsensitive for pixel distribution. Especially, the proposed method offers reasonable segmentation results in edge areas with lower contrast owing to the regional characteristics of the color components reflected in the Y/C bit-plane summation image.

  • PDF

A Study on Face Contour Line Extraction using Adaptive Skin Color (적응적 스킨 칼라를 이용한 얼굴 경계선 추출에 관한 연구)

  • Yu, Young-Jung;Park, Seong-Ho;Moon, Sang-Ho;Choi, Yeon-Jun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.383-391
    • /
    • 2017
  • In image processing, image segmentation has been studied by various methods in a long time. Image segmentation is the process of partitioning a digital image into multiple objects and face detection is a typical image segmentation field being used in a variety of applications that identifies human faces in digital images. In this paper, we propose a method for extracting the contours of faces included in images. Using the Viola-Jones algorithm, to do this, we detect the approximate locations of faces from images. But, the Viola-Jones algorithm could detected the approximate location of face not the correct position. In order to extract a more accurate face region from image, we use skin color in this paper. In details, face region would be extracted using the analysis of horizontal and vertical histograms on the skin area. Finally, the face contour is extracted using snake algorithm for the extracted face area. In this paperr, a modified snake energy function is proposed for face contour extraction based snake algorithm proposed by Williams et al.[7]

Region-based Image Retrieval Algorithm Using Image Segmentation and Multi-Feature (영상분할과 다중 특징을 이용한 영역기반 영상검색 알고리즘)

  • Noh, Jin-Soo;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.57-63
    • /
    • 2009
  • The rapid growth of computer-based image database, necessity of a system that can manage an image information is increasing. This paper presents a region-based image retrieval method using the combination of color(autocorrelogram), texture(CWT moments) and shape(Hu invariant moments) features. As a color feature, a color autocorrelogram is chosen by extracting from the hue and saturation components of a color image(HSV). As a texture, shape and position feature are extracted from the value component. For efficient similarity confutation, the extracted features(color autocorrelogram, Hu invariant moments, and CWT moments) are combined and then precision and recall are measured. Experiment results for Corel and VisTex DBs show that the proposed image retrieval algorithm has 94.8% Precision, 90.7% recall and can successfully apply to image retrieval system.

Automatic Segmentation of Positive Nuclei and Negative Nuclei on Color Breast Carcinoma Cell Image Using Texture Feature and Neural Network Classification (칼라 유방암조직영상에서 질감 특성과 신경회로망을 이용한 양성세포핵과 음성세포핵의 자동 분할)

  • 최현주;허민권;최흥국;김상균;최항묵;박세명
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.422-424
    • /
    • 1999
  • 본 논문에서는 질감 특징과 신경회로망을 이용한 유방암조직영상의 분할 방법을 제안한다. 신경회로망의 입력 노드에 사용될 질감 특징을 얻기 위해 10개의 영상에 대해 각 영역(양성세포핵, 음성세포핵, 배경)에서 10개씩의 화소를 선택하고, 그 화소를 중심으로 하는 5$\times$5 영역 30개를 획득, 총 300개의 영역에 대해 R, G, B 각각의 밴드에서 18개의 질감특징을 추출한다. 54개의 입력노드, 28개의 은닉노드, 3개의 출력노드의 구조를 가진 신경회로망을 구성하고, 역전파 학습 알고리즘을 사용하여 신경회로망을 최대오차율이 10-3보다 작을 때까지 학습시킨다. 학습에 의해 획득되어진 분류기를 이용하여 유방암 조직 세포영상을 양성세포핵, 음성세포핵, 배경부분으로 자동 분할한다.

  • PDF