확산(Diffusion)을 이용한 기존의 칼라영상 분할은 확산의 횟수가 반복될수록 경계선 정보가 적절히 유지되지 못하거나 잡음을 제거하지 못함으로써 워터쉐드(Watershed) 알고리즘을 적용하는 경우, 과분할을 피할 수 없다는 단점을 갖고 있다. 본 논문에서는 수리 형태학(Mathematical Morphology)과 비선형 확산(Non-Linear Diffusion)을 함께 적용하여 과분할의 문제점을 제거한 워터쉐드 결과를 얻을 수 있는 칼라영상 분할방법을 제안한다. 임의의 칼라 영상을 LUV 색상공간으로 변환하여, 그 각각의 색상공간에 수리 형태학을 응용한 재구성에 의한 닫힘(Reconstruction) 연산과 비선형 확산을 함께 적용하여 경계선을 적절히 유지하면서 잡음을 제거한 단순 영상을 획득할 수 있다. 이 영상에서 칼라 영상의 기울기(Gradient) 정보를 획득하고, 워터쉐드 알고리즘을 적용하여 영상을 분할한다. 실험 결과, 기존의 방법보다 과분할이 현저히 제거되고, 칼라 영상이 매우 효과적으로 분할됨을 확인하였다
본 논문에서는 경계 중요도 맵과 영역 병합에 의한 영상 분할 방법을 제안한다. 경계 중요도 맵은 텍스쳐 경계 강도와 칼라 경계 강도의 조합에 의해 생성한다. 텍스쳐 경계 강도는 가버 필터 뱅크를 사용하여 다중 스케일과 방향에 따른 필터링 결과를 병합하여 생성하며 칼라 경계 강도는 HSI 칼라 모델의 H 성분에 대해 계산한다. 경계 중요 맵 영상에 대해서는 Watershed 변환을 통해 사전 영상 분할을 수행한다. Watershed 변환에 의한 영상 분할은 영역들이 과잉 분할되는 현상이 나타나므로 이를 개선하여 최종 영상 분할 결과를 생성한다. 이를 위해 우선 모폴로지 연산을 사용하여 경계 중요도 맵 영상에 대한 컨트라스트 향상과 마커 영역을 생성한다. 모폴로지 연산으로 과잉 분할 영역은 줄어들지만 여전히 상당수 존재하게 되므로 이를 극복하기 위해 영역 병합 과정을 수행한다. 영역 병합 단계에서는 영역 내부의 평균 칼라 및 가버 텍스쳐 벡터를 함께 사용함으로써 효과적으로 과잉 분할된 영역을 병합할 수 있도록 하였다. 제안한 방법은 다양한 자연 영상에 대해 실험하였으며 기존 방법과 결과를 비교하여 성능의 우수성을 확인하였다.
최근 효과적인 내용기반 영상검색을 위해 특징 추출 방법이 많이 연구되고 있다. 특히 칼라 정보를 이용하여 특징을 얻는 방법은 여러 가지 장점 때문에 많이 사용되고 있다 본 논문에서는 칼라 코렐로그램(color correlogram) 기반의 새로운 특징 추출 방법을 제안한다. 제안한 방법은 웨이브릿 변환 계수를 사용하여 영상을 복잡한 영역과 그렇지 않은 영역으로 분할하고, 각 영역의 칼라 코렐로그램을 영상의 특징으로 사용해 영상을 검색하는 방법이다. 제안한 방법으로 영상을 검색하는 방법은 기존의 칼라 코렐로그램을 이용한 방법보다 성능이 우수함을 실험에서 확인할 수 있었다.
본 논문에서는 칼라공간상의 거리와 이웃정보를 이용한 클러스터링을 통한 칼라영상 분할 방법을 제안한다. 칼라영상의 한 픽셀은 칼라정보(R.G.B)와 위치정보(x.y)를 가진다. 대개의 칼라공간에서의 클러스터링방법은 픽셀을 (R,G,B)공간으로 변환후 (R,G,B)공간상의 분포만을 이용하지만 여기서는(R,G,B)와 (x.y)모두를 사용하여 클러스터링함으로 영상의 세그먼트들을 찾는다. 클러스터링 방법으로서 인력을 모방하는 중력 클러스터링(gravitational clustering)을 사용하였다. 이 방법은 클러스터의 중심값과 클러스터 수를 미리 정해주지 않아도 자동적으로 결정할 수 있는 장점이 있다. 중력 클러스터링에서 찾은 클러스터 수를 가지고 다른 클러스터링 방법(K-means)에 입력으로 주어 결과를 비교해 본다. 본 논문에서는 이웃관계를 따라 클러스터링하는 것이 정확한 경계선을 찾는데 효과적임을 보여준다.
본 논문에서는 모폴로지(Morphology) 재구성(Reconstruction)과 비선형 확산(Non-Linear Diffusion)을 이용하여 칼라 영상을 유사한 영역으로 분할하는 방법을 제안한다. 초기에 RGB 영상을 LUV 색상 공간으로 전환하고, 그 색상공간에 모폴로지를 응용한 재구성(Reconstruction)에 의한 닫힘(Closing) 연산과 비선형 확산(Non-Linear Diffusion)을 적용하여 잡음을 제거한 실험 영상을 획득한다. 이 영상에서 워터쉐드 알고리즘을 위한 칼라 영상의 기울기(Gradient) 정보를 획득하고, 그 영상에 마커(Marker) 정보를 이용한 워터쉐드(Watershed) 알고리즘을 적용하여 영상을 효과적으로 분할한다. 칼라 영상을 대상으로 한 실험에서 제안 방법이 영상을 효과적으로 분할함을 확인 하였다.
영상을 유사한 특성을 갖는 영역 단위로 분할하는 작업은 다양한 영상 처리를 위한 전처리 과정으로 사용되고 있다. 본 논문에서는 모폴로지(Morphology)와 비선형 확산(Non-Linear Diffusion)을 이용한 영상분할 방법을 제안한다. 초기에 LUV 색상공간에 모폴로지를 응용한 재구성(Reconstruction)에 의한 닫힘(Closing) 연산과 비선형 확산(Non-Linear Diffusion)을 통해 실형 영상을 획득한다 이 영상에서 칼라 영상의 기울기(Gradient) 정보를 획득하고, 마커(Marker) 정보를 이용한 워터쉐드(Watershed) 알고리즘을 적용하여 영상을 효과적으로 분할한다. 그레이 영상과 칼라 영상을 대상으로 한 실험에서 제안 방법이 영상을 효과적으로 분할함을 확인하였다.
본 논문에서는 영역병합 방법을 이용한 칼라 영상 분할 방법을 제안하였다. 영상 분할 전단계에서 비선형 필터링 방법을 이용한 평활화와 채도 강화 및 명도 평균화를 수행하여, 영상 내 존재하는 비균질성을 줄이고, 칼라 히스토그램의 zero-crossing 정보를 이용한 비균일 양자화를 수행하여 유사한 칼라성분을 가지는 영역들을 분할하였다. 웨이브릿 변환의 고주파 대역 에너지를 이용하여 분할된 초기 영역의 윤곽성분 강도를 측정하였고, 이를 통해 병합 후 후보영역을 선정하였다. 영역병합을 위한 영역간 유사도 측정은 R, G, B 칼라성분의 유클리디안 거리를 측정하여 수행하였다. 제안된 방법은 기존의 방법에 비해 불규칙한 광원으로 불필요한 영역이 분할되는 것을 줄일 수 있었고, 이를 실험을 통해 입증하였다.
현재까지 다양한 영상 분할 방법들이 계속해서 제안되어 오고 있으나 특정한 제약조건이 설정되지 않은 일반적인 자연 환경의 조건 하에서 촬영된 영상으로부터 조명, 음영, 그리고 하이라이트 등과 같은 주변의 환경 요인에 영향을 받지 않고 강건하게 영상을 분할하는 작업은 여전히 매우 어려운 작업으로 알려져 있다. 본 논문에서는 이런 문제를 일정 부분해결하기 위해서 칼라 불변량을 이용한 환경 적응적인 영상 분할 방법을 제안한다. 제안된 방법에서는 W, C, U, N, H와 같은 여러 가지 칼라 불변량을 소개하고, 조명이나 음영, 그리고 하이라이트와 같은 영상이 촬영되는 주변 환경의 요인들을 자동으로 검출한다. 그리고 검출된 환경 요인에 최적으로 적합한 칼라 불변량을 선택하여 에지를 기반으로 영상을 효과적으로 분할한다. 본 논문의 실험 결과에서는 제안한 방법이 기존의 방법에 비해서 주변의 환경 변화에 강건하게 에지를 기반으로 영상을 분할하는 것을 보여준다. 본 논문에서 제안된 방법은 주위 환경에 상당수 독립적으로 동작하므로 환경에 강건한 에지 기반의 영상 분할이 필요한 여러 응용 시스템에서 유용하게 활용될 수 있을 것으로 기대한다.
본 논문에서는 특이 칼라 분포에 대한 정보를 활용함으로써 어떠한 사전 지식없이 칼라 영상으로부터 중심 객체를 추출하는 방법에 대해 제안한다. 중심 객체는 영상 중심 부근에 위치하면서 특이 칼라 분포를 갖는 영역들의 집합으로 정의한다. 특이 칼라는 영상 경계 주변에 비해 영상의 중심 위치에서 보다 높은 밀도로 존재하는 칼라로 정의한다. 중심 객체 추출을 위해 우선 특이 칼라 정보를 사용하여 영상 분할된 영역 중에서 객체의 특징을 대표하는 영역들의 집합을 핵심객체영역을 선택한다. 핵심객체영역에 인접하며 이와 높은 칼라 유사도를 갖고 또한 배경이 아닌 영역들을 반복적으로 핵심객체영역에 병합하여 핵심객체영역을 확장함으로써 생성된 최종 병합 결과를 중심 객체로 추출한다. 따라서 중심 객체는 상이한 칼라 특징을 갖는 영역으로 구성될 수 있으며 상호 연결되어 있을 경우에는 두개 이상의 객체가 중심 객체에 포함될 수 있다. 제안된 방법의 타당성 및 중요 칼라의 유용성은 다양한 실험 영상을 통해 확인하였다. 본 논문에서 제안된 방법으로 추출된 중심 객체는 영상 검색 응용 분야에 유용하게 사용될 수 있을 것으로 기대한다.
본 논문에서는 텍스쳐가 포함된 칼라 영상으로부터 텍스쳐에 무관하게 영역을 분할할 수 있는 방법을 개발하였다. 빠른 처리를 위해 영상을 블록 단위로 쪼개고 블록의 경계 성분값(H)을 계산하여 영역 분할에 이용할 수 있도록 하였다. M값은 객체의 경계에서는 높은 경계 강도를 갖지만 영역 내부나 텍스쳐 경계에서는 상대적으로 낮은 경계 강도를 갖도록 정의되었다 영상 분할을 위해 M값으로 표현된 M영상으로부터 Watershed를 이용해 경계 위치를 결정하고 닫혀진 형태로 경계가 표현될 수 있도록 하였다. 그런데 Watershed 방법은 과잉 분할 결과를 초래하므로 인접 영역 사이의 공유 경계에 대한 강도와 영역 내부의 칼라 분포 특성을 이용하여 영역을 병합함으로써 객체 경계처럼 중요한 변화가 발생되는 영역 단위의 최종 영상 분할된 결과를 얻을 수 있도록 하였다. 본 논문에서 제안한 방법은 MPEG4나 내용기반검색을 위한 영역분할에 유용하게 적용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.