• Title/Summary/Keyword: 칼데라

Search Result 79, Processing Time 0.021 seconds

Interpretion of Transition between Explosive and Effusive Eruptions from Microlite Textural Analyses in the Albong Lava Dome, Ulleung Island, Korea (울릉도 알봉 용암돔의 미정 조직분석으로부터 폭발성 및 분류성 분출 간의 전환 해석)

  • Hwang, Sang Koo;Kim, Ki Beom;Son, Young Woo;Hyeon, Hye Weon
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.553-564
    • /
    • 2020
  • Transition between explosive and effusive eruption in Ulleung Island is observed in the Nari Scoria Deposits and Albong Trachyandesite (lava dome) origined by dome-building eruption and may be related to factors such as magma influx, ascent rate and degassing. However, the interpretation of them has not been resolved yet because the interaction between these factors is not complex but also the resulting behaviour during eruption is unpredictable. This paper focuses on the explosive and effusive activity perceived during building the Albong lava dome in Nari caldera. Samples were collected along with time from the scoria deposits and lava dome, linked to eruption stage and style of activity. Textures of groundmass feldspar microlites from these samples are quantitatively analyzed, including measurements of areal number density, mean microlite size, crystal aspect ratio, groundmass crystallinity and crystal size. The microlite textures show that shallow pre- and syn-eruptive magmatic processes acted to govern the changing behaviour during the eruption. Transition between explosive and effusive eruption was driven by the dynamics of magma ascent in the conduit, with degassing and crystallisation acting via feedback mechanisms, resulting in a cycle of effusive and explosive eruption.

Occurrence and Genesis of Obsidian in Gombawi Welded Tuff, Ulleung Island, Korea (울릉도 곰바위용결응회암 내 흑요암의 산출특징과 성인)

  • Im, Ji Hyeon;Choo, Chang Oh
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.105-116
    • /
    • 2017
  • The purpose of this study is to provide the information on genesis of obsidian occurring in the southwestern part of Ulleung Island, Korea, and to discuss its implications for volcanic activity through volcanological and mineralogical properties of obsidian. Obsidian occurs locally at the lower part of the Gombawi welded tuff, showing various complex textures and flow banding. Though obsidian is mostly homogeneous, it is closely associated with alkali feldspar phenocrysts, reddish tuff, and greyish trachyte fragments. The obsidian occurs as wavy, lenticular blocks or lamination composed of fragments. Cooling fractures developed on obsidian glass are characterized by perlitic cracks, orbicular or spherical cracks, indicating that obsidian rapidly quenched to form an amorphous silica-rich phase. It is evident that hydration took place preferentially at the outer rim relative to the core of obsidian, forming alteration rinds. The glassy matrix of obsidian includes euhedral alkali feldspars, diopside, biotite, ilmenite, and iron oxides. Microlites in glassy obsidian are composed mainly of alkali feldspars and ilmenite. Quantitative analysis by EPMA on the obsidian glass part shows trachytic composition with high iron content of 3 wt.%. Accordingly, obsidian formed with complex textures under a rapid cooling condition on surface ground, with slight rheomorphism. Such results might be induced by collapse of lava dome or caldera, which produced the block-and-ash flow deposit and the transportation into valley while keeping high temperatures.

Tectonic Setting and Arc Volcanisms of the Gyeongsang Arc in the Southeastern Korean Peninsula (한반도 남동부 경상호의 조구조 배경과 호화산작용)

  • Hwang, Sang Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.367-383
    • /
    • 2012
  • The Gyeongsang Arc is the most notable of the Korea Arc that is composed of several volcanic arcs trending to NE-SW direction in the Korean peninsula. The Hayang Group has many volcanogenic interbeds of lava flows by alkaline or calc-alkaline basaltic volcanisms during early Cretaceous. Late Cretaceous calc-alkaline andesitic and rhyolitic volcanisms reconstructed the Gyeongsang Arc that consist of thick volcanic strata on the Hayang Group in The Gyeongsang Basin. The volcanisms characterize first eruptions of basaltic and andesitic lavas with small pyroclastics, and continue later eruptions of dacitic and rhyolitic ash-fall and voluminous ash-flow with some calderas and then domes and dykes. During the Early Cretaceous (about 120 Ma), oblique subduction of the Izanagi plate to NNW from N direction results in sinistral strike-slip faults to open a pull-apart basin in back-arc area of the Gyeongsang Arc, in which erupted lava flows from generation of magma by a decrease in lithostatic pressure. Therefore the Gyeongsang Basin is interpreted into back-arc basin reconstructed by a continental rifting. Arc volcanism began in about 100 Ma with exaggeration of the back-arc basin in the Gyeongsang, and then changed violently to construct volcanic arcs. During the Late Cretaceous (about 90 Ma), orthogonal subduction of the Izanagi plate to NW from NNW direction ceased development of the basin to prolong violent volcanisms.

Comparative Anatomy of the Hydrothermal Alteration of Chonnam and Kyongsang Hydrothermal Clay Alteration Areas in Korea (전남 및 경상 열수변질 점토광상의 생성환경 비교)

  • Koh, Sang Mo;Chang, Ho Wan
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • Chonnam and Kyongsang clay alteration areas are distributed in volcanic fields of the Yuchon Group in late Cretaceous period. The host rock of the Chonnam alteration area is generally acidic and that of the Kyongsang alteration area is acidic to dominantly intermediate volcanics. The important difference of two alteration areas is source of fluid; the Chonnam alteration area is characterized by dominantly meteoric water and the Kyongsang alteration area is characterized by dominantly magmatic water. Accordingly, the high temperature minerals such as pyrophyllite and andalusite, and boron bearing minerals such as dumortierite and tourmaline are common in the Kyongsang alteration area. In contrast to this, the lower temperature minerals such as kaolin and alunite are common in the Chonnam alteration area. The mineralogical difference of two alteration areas were depended on the difference of the formation temperature of clay deposits. The other important geochemical difference is the chemistry of hydrothermal solution such as pH. The alteration of "acid-sulfate type" with alteration mineral assemblage of alunite-kaolin-quartz is dominant in the Chonnam alteration area, which was caused by the attack of strong acid and acid solution. In contrast to this, the that of "quartz-sericite type" with the mineral assemblage of sericite-quartz is dominant in the Kyongsang alteration area, which was caused by the attack of neutral or weak acid solution. Also, the Kyongsang and Chonnam alteration areas show the difference in structural setting; the Chonnam alteration area is commonly associated with silicic domes and the Kyongsang alteration area is commonly associated with calderas.

  • PDF

A Study on Characteristics of Magnetism from Hydrothermal Vent Area on Esmeralda Bank in Mariana Arc (Mariana 해령 Esmeralda Bank 해저열수분출 지역에서의 지자기 특성 연구)

  • Kim, Ho;Kim, Chang-Hwan;Jeong, Eui-Young;Park, Chan-Hong;Kim, Jong-Uk;Park, Chung-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.27-32
    • /
    • 2008
  • Detailed bathymetry and magnetic survey data for Esmeralda Bank obtained by R/V Onnuri of Korea Ocean Research & Development Institute in September 2007 were analyzed to estimate the locations of possible hydrothermal vents. The shape of Esmeralda Bank is caldera type opened in the western part. The summit is very shallow, about 50 meter b.s.l. and the bottom is about 1300 meter b.s.l. The western part of Esmeralda Bank is more steeper and topographic irregular than eastern part, and showed the valley made by erosion or collapse. The magnetic anomaly patterns of Esmeralda Bank located low anomalies over the north and high anomalies over the south. The magnetic anomalies are steep over the summits and gently smooth over the deep bottom. Two low magnetization zones are located in the summit and westside of Esmeralda Bank. The low magnetization zones of the summits of Esmeralda Bank suggest the possible existence of hydrothermal vent.

  • PDF

Evaluation of Volcanic Processes and Possible Eruption Types in Ulleung Island (울릉도에서의 화산과정과 발생 가능한 분출유형의 평가)

  • Hwang, Sang Koo;Jeong, Seong Wook;Ryu, Han Young;Son, Young Woo;Kwon, Tae Ho
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.715-727
    • /
    • 2020
  • Volcanostratigraphy in Ulleung Island is divided into 4 stratigraphic groups: Dodong Basaltic Rocks, Ulleung Group, Seonginbong Group and NariGroup. The main pyroclastics in them includes lapilli tuff intercalated within the Dodong Basaltic Rocks, lapilli tuff at the top of Sadong Breccia, Sataegam Tuff, Gombawi Welded Tuff, Bongrae Scoria Deposits, Maljandeung Tuff, Nari Scoria Deposits and Jugam Scoria Deposits. Analysing eruption types, The lapilli tuff in the Dodong Basaltic Rocks is derived from Surtseyan eruption, and the Bongrae, Nari and Jugam Scoria Deposits are caused by Strombolian eruptions or/and sub-Plinion eruptions, but the Sataegam Tuff and Maljandeung Tuff are derived from Plinian and phreatoplinian eruptions. Among them the large-scaled eruptions. In particular, the eruptions of Maljandeung were large enough to result in caldera collapse, and had falled out tephras to the eastern Korean peninsula but even Japan Islands. The magma with high potential to be still alive is judged to be trachyandesitic and phonolitic in composition. If the trachyandesitic magma explodes, it will probably result in a strombolian eruption and have a fairly low explosivity, but if the phonolitic magma explodes, it will probably result in a plinian eruption and have a much higher explosivity. If the eruption had a high explosivity, there is a possibility that it could easily be converted into a phreatoplinian eruption due to the influx of groundwater by the easy generation of fractures. These large-scaled eruptions could fall out tephras to the eastern Korean peninsula but even Japan Islands.

A Study on the Hydrothermal Vent in the Mariana Trench using Magnetic and Bathymetry Data (지자기자료 및 정밀해저지형자료를 이용한 마리아나 해구 해저 열수광상 연구)

  • Kim, Chang-Hwan;Kim, Ho;Jeong, Eui-Young;Park, Chan-Hong;Go, Young-Tak;Lee, Seung-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.22-40
    • /
    • 2009
  • Detailed bathymetry and magnetic survey data for NW Rota-1 and Esmeralda Bank obtained by R/V Onnuri of Korea Ocean Research & Development Institute in September 2007 were analyzed to investigate bathymetry and magnetic characteristics of the study area and to estimate the locations of possible hydrothermal vents. The shape of NW Rota-1 is corn type, and the depth of the summit is about 500 meter b.s.l. NW Rota-1 shows irregular topographic expression in the southeastern part. The shape of Esmeralda Bank is caldera type opened in the western part. The summit is very shallow, about 50 meter b.s.l. The western part of Esmeralda Bank is more steeper and topographic irregular than the eastern part, and have the valley made by erosion or collapse. The magnetic anomaly patterns of NW Rota-1 and Esmeralda Bank show low anomalies over the north and high anomalies over the south. The magnetic anomalies are steep over the summits and gently smooth over the deep bottom. The low magnetization zone occurs over the summit of NW Rota-1 and is surrounded by the high zones correlated with its crater. Two low magnetization zones are located in the summit and westside of Esmeralda Bank. The low magnetization zones of the summits of NW Rota-1 and Esmeralda Bank suggest the possible existence of hydrothermal vent.

Shallow subsurface structure of the Vulcano-Lipari volcanic complex, Italy, constrained by helicopter-borne aeromagnetic surveys (고해상도 항공자력탐사를 이용한 Italia Vulcano-Lipari 화산 복합체의 천부 지하 구조)

  • Okuma, Shigeo;Nakatsuka, Tadashi;Komazawa, Masao;Sugihara, Mitsuhiko;Nakano, Shun;Furukawa, Ryuta;Supper, Robert
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.129-138
    • /
    • 2006
  • Helicopter-borne aeromagnetic surveys at two different times separated by three years were conducted to better understand the shallow subsurface structure of the Vulcano and Lipari volcanic complex, Aeolian Islands, southern Italy, and also to monitor the volcanic activity of the area. As there was no meaningful difference between the two magnetic datasets to imply an apparent change of the volcanic activity, the datasets were merged to produce an aeromagnetic map with wider coverage than was given by a single dataset. Apparent magnetisation intensity mapping was applied to terrain-corrected magnetic anomalies, and showed local magnetisation highs in and around Fossa Cone, suggesting heterogeneity of the cone. Magnetic modelling was conducted for three of those magnetisation highs. Each model implied the presence of concealed volcanic products overlain by pyroclastic rocks from the Fossa crater. The model for the Fossa crater area suggests a buried trachytic lava flow on the southern edge of the present crater. The magnetic model at Forgia Vecchia suggests that phreatic cones can be interpreted as resulting from a concealed eruptive centre, with thick latitic lavas that fill up Fossa Caldera. However, the distribution of lavas seems to be limited to a smaller area than was expected from drilling results. This can be explained partly by alteration of the lavas by intense hydrothermal activity, as seen at geothermal areas close to Porto Levante. The magnetic model at the north-eastern Fossa Cone implies that thick lavas accumulated as another eruption centre in the early stage of the activity of Fossa. Recent geoelectric surveys showed high-resistivity zones in the areas of the last two magnetic models.

Magmatic Evolutions based on Compositional Variations with Time in the Maljandeung Tuff, Ulleung Island, Korea (울릉도 말잔등응회암에서 시간에 따른 조성변화에 근거한 마그마 진화)

  • Hwang, Sang Koo;Lee, So-Jin;Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.111-128
    • /
    • 2019
  • Ulleung Island is the top of an intraplate alkalic volcano rising 3200 m from sea floor in the East Sea (or Sea of Japan). The emergent 984.6 m consist of eruptive products of basaltic, trachytic and phonolitic magmas, which are divided into Dodong Basaltic Rocks, and Ulleung, Seonginbong and Nari groups. The Maljandeung Tuff in the Nari Group consists of thick pyroclastic sequences which are subdivided into 4 members (N-5, U-4, 3, 2), generating from explosive eruptions during past 18.8~5.6 ka B.P. From chemical data, the Member N-5, phonolitic in composition, is considerably enriched in incompatible elements and REE patterns with significant negative Eu anomalies. The members 4, 3 and 2 are phonolitic to tephriphonolitic in composition, and their REE patterns do not have significant Eu anomalies. In variation trend diagrams, many elements show abrupt compositional gaps between members, and gradual upward-mafic variations from phonolite to tephriphonolite within each member. It suggests a downward-mafic zonation that were evolved into phonolitic zone in the lower part to tephriphonolitic zone in upper part of magma chamber. It is supposed that the chemical stratification generated from multiple mechanisms of thermal gravidiffusion, crystal fractionation, and gradual melting and sequential emplacement. The stratified magmas were explosively erupted to generate a small caldera during short period (11 ka B.P.). Especially both members (U-3, 2) were accumulated by gradually erupting from the upper phonoltic zone to the lower tephriphonoltic zone of the stratified chamber in 8.4 ka B.P. and 5.6 ka B.P. time, respectively.