• Title/Summary/Keyword: 카본-카본 복합재료

Search Result 140, Processing Time 0.026 seconds

A Study on the Evaluation of Mechanical Behavior of Golf Shafts (골프 샤프트의 역학적 거동 평가에 관한 연구)

  • 정성교;윤형택;정성균;임승규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.44-47
    • /
    • 2002
  • A liner static and dynamic analysis for a golf shaft, which is made of carbon fiber reinforced composite materials, is presented in this study. Major mechanical parameters of golf shafts such as deflection, torsional angel, frequency of vibration(CPM), and kick point are analyzed by finite element method. The effects of major parameters on the performance of golf shafts are also discussed. The results show that the major parameters of golf shafts are strongly dependent on the material properties of fibers and design pattern of golf shafts. The present results will be useful to design sheet-rolled golf shafts.

  • PDF

Simulation of Complex Permittivity of Carbon Black/Epoxy Composites at Microwave Frequency Band (마이크로파에서의 카본 블랙/에폭시 복합재료의 유전율 모사)

  • Kim J.B.;Kim T.W.;Kim C.G.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.155-160
    • /
    • 2004
  • This paper presents a study on the permittivities of the carbon black/epoxy composite at microwave frequency. The measurements were performed at the frequency band of $1 GHz\~18GHz$. The results show that the complex permittivities of composites depend strongly on the natures and concentrations of the carbon black dispersion. The frequency spectrums of dielectric constants and ac conductivities of composites show the good conformities with descriptions of the percolation theory. The carbon black concentration dependencies do not have conformities with the descriptions of percolation theory and there is no peculiar concentration like percolation threshold, on that concentration, the conductivity of composite jumps up. A new scheme, that is a branch of Lichtenecker-Rother formula, is proposed to obtain a mixing law to describe the complex permittivities of the composites as function frequency and concentration of carbon black.

  • PDF

Estimation of material properties of carbon nanotube composite applying multi-scale method (다중스케일 기법을 이용한 카본나노튜브 복합재료의 물성치 계산)

  • Kim J.T.;Hyun S.J.;Kim Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.165-168
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

A Study on the Processing Technique to form Various Dimples on the Surface of Composite Parts (복합재료 부품 표면에 다양한 딤플을 형성하는 성형 방법)

  • Joe, C.R.;Byun, Gill-Jae
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • In this study, an economical and effective processing technique to form multiple dimples on the surface of a composite part, which are known to be useful to improve aerodynamic performance and heat dissipation. Forming dimples on the surface using molds is an expensive processing because forming multiple tiny positive spheres on the surface of the mold requires much time and effort. In this study, plates with multiple round holes are utilized as a core to form dimples on the carbon/epoxy composite skin covering the core. A vacuum bagging process is used to apply pressure on the surface while curing. Composite parts which have multiple dimples on the surface can be utilized in the field which needs high aerodynamic performance and heat dissipation ability such as high speed sports car bodies.

A Study on Electromagnetic Wave Absorbing Sandwich Structures (샌드위치 구조를 갖는 전자기파 흡수체에 관한 연구)

  • Park, Ki-Yeon;Lee, Sang-Eui;Kim, Chun-Gon;Lee, In;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.64-71
    • /
    • 2004
  • The object of this study is to design the Radar Absorbing Structures (RAS) having sandwich structures in the X-band ($8.2{\sim}12.4GHz$) frequencies. Glass fabric/epoxy composites containing conductive carbon blacks and carbon fabric/epoxy composites were used for the face sheets. Polyurethane(PU) foams containing multi-walled carbon nanotube (MWNT) were used for the core. Their permittivities in the X-band were measured using the transmission line technique. The reflection loss characteristics for multi-layered sandwich structures were calculated using the theory of transmission and reflection in a multi-layered medium. Three kinds of specimens were fabricated and their reflection losses in the X-band were measured using the free space technique. Experimental results were in good agreements with simulated ones in 10dB absorbing bandwidth.

Fabricaton of PEMFC separators with conducting polymer composites by injection molding process and evaluation of moldability and electrical conductivity of the separators (전도성 복합재료를 이용한 PEMFC용 separator 사출성형 제조 및 전기전도성 평가)

  • Yoon, Yong-Hun;Lim, Seung-Hyun;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1361-1366
    • /
    • 2010
  • This research aims to develop polymer composites which can be used for PEMFC separators by injection molding process. Considering the moldability and stiffness, we used PPS(Poly(phenylene sulfide)) and PP(Polypropylene) as base resin. In order to improve electrical conductivity and physical properties, we chose glass fiber, carbon fiber, carbon black, and both expanded graphite and synthetic graphite. The 3 type composites are prepared for injection molding of PEMFC separators. and CAE(Computer Aided Engineering) analysis was conducted to optimize injection processing parameters(injection pressure, heat time, mold temperature etc.). We did successfully fabricate the separators by injection molding, and measure the electrical conductivity of the samples by using four point probe device. Conclusively, PP/SG/CB composite showed better both electrical conductivity and moldability than the others.

A Study on 4 Point Bending Strength of Carbon/epoxy Face Sheet and Honeycomb Core Sandwich Composite Structure after Open Hole Damage (카본/에폭시 면재 및 허니컴 코어 샌드위치 복합재 구조의 구멍 손상에 의한 4점 굽힘 강도 연구)

  • Park, Hyunbum
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.77-81
    • /
    • 2014
  • In this study, it was performed damage assessment and repair of small scale aircraft adopted on composite. This aircraft adopted the sandwich structure to skin of wing. This study aims to investigate the residual strength of sandwich composites with nomex honeycomb core and carbon fiber face sheets after the open hole damage by the experimental investigation. The 4-point bending tests were used to find the bending strength, and the open hole was applied to introduce the simulated damage on the specimen. The bending strength test results after open hole were compared with the results of no damaged specimen test. In addition, The damaged composite structure was repaired using external patch repair method after removing damaged area. After that, this study presents comparison results of the experimental investigation between the damaged and the repaired specimen. It was found that the bending strength of repaired specimen was recovered up to 95% of undamaged specimen.

Study on the Oil Seal Application Using Polytetrafluoroethylene Composites (Polytetrafluoroethylene 복합재료를 이용한 오일씰 응용에 관한 연구)

  • Ha, Ki-Ryong;Lee, Jong-Cheol;Lee, Young-Seok
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.32-39
    • /
    • 2010
  • The mechanical properties of PTFE 100%, PTFT 90% + carbon black 10%, PTFE 85% + glass fiber 15%, PTFE 80% + glass fiber 15% + molybdenum disulfide ($MoS_2$) 5%, PTFE 75% + glass fiber 25%, and PTFE 75% + carbon black 18% + graphite 7% composites were investigated in this study. The differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine the heat of fusion(${\Delta}H_f$) and thermal stability of the composites. Also, the wear surface and wear volume of PTFE lip seal were examined using the durability test. Wear surface was observed using scanning electron microscope (SEM). It was found that the hardness, wear resistance and durability were enhanced by adding glass fiber and molybdenum disulfide into pure PTFE, but tensile strength and elongation were decreased. According to the experimental results, the composite (PTFE + 15% glass fiber + 5% molybdenum disulfide) showed the best properties for applying to oil-seal among six types of PTFE composites.

Electromagnetic Characteristics of Carbon Black filled Class-Fabric Composite Sandwich Structure (카본블랙이 첨가된 유리직물 복합재 샌드위치 구조의 전자기적 특성)

  • Park, Ki-Yeon;Lee, Sang-Eui;Kang, Lae-Hyong;Han, Jae-Hung;Kim, Chun-Gong;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.234-237
    • /
    • 2003
  • The absorption and the interference shielding of the electromagnetic wave problem have been a very important issue for commercial and military purposes. This study dealt with the simulation reflection loss for electromagnetic absorbing sandwich type structures in X-band(8.2Ghz~12.4GHz). Glass/epoxy composites containing conductive carbon blacks were used for the face sheets and styrofoams were used for the core. Their permittivities in X-band were measured using the transmission line technique. Simulation results of 3-1ayered sandwich type structures showed the reflection loss using the theory about transmission and reflection in a multi-layered medium.

  • PDF

Fabrication and Straining Model of a CNT/EAP Composite Film (카본나노튜브/도전성폴리머(CNT/EAP) 복합재 필름의 제조 및 특성분석)

  • Zhang, Shuai;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • The relationship between strain and applied potential was derived for composite actuators consisting single-wall carbon nanotubes (SWNTs) and conductive polymers (CPs). During deriving the relationship, an electrochemical ionic approach is utilized to formulate the electromechanical actuation of the composite film actuator. The results show that the well-aligned SWNTs composite actuator can give good actuation responses and high actuating forces available. The actuation is found to be affected by both SWNTs and CPs components and the actuation of SWNTs component has two kinds of influences on that of the CPs component: reinforcement at the positive voltage and abatement at the negative voltage. CNT/EAP was fabricated successfully using the chemical polymerization method.

  • PDF