• Title/Summary/Keyword: 카메라 모형

Search Result 156, Processing Time 0.032 seconds

Bottom Topography Observation in the Intertidal Zone Using a Camera Monitoring System (카메라 관측 시스템을 이용한 조간대 3차원 지형 관측)

  • Kim Tae-Rim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2006
  • Time series of waterline changes during a flood/ebb cycle can be utilized for supplementary data for measuring bottom topography. The waterlines extracted from consecutive images are substituted for depth contours using water level data. The distances between contours are quantified through a rectification image process. This technique is applied to the Keunpoolan beach in the Daeijak Island near Incheon. A camera monitoring technique supported by natural water level changes produces bottom topography with high precision. It is also less time consuming and more economical. The technique also can be utilized effectively to the physical modeling f3r measuring bottom changes in the three dimensional basin.

PHOTOMETRIC STUDY OF A W UMa TYPE CONTACT BINARY AH CNC (W UMa형 접촉쌍성 AH Cancri에 대한 측광학적 연구)

  • 윤재혁;김호일;이재우;김승리;성언창;경재만;오갑수
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.249-260
    • /
    • 2003
  • CCD photometric observations of a W UMa type contact binary AH Cnc were performed for ten nights from December 1998 to May 1999 using a PM512 CCD camera and BVI filters attached to the 61㎝ reflector at Sobaeksan Optical Astronomy Observatory. New BVI light curves were analyzed with contact Mode 3 of the Wilson-Devinney binary model. We obtained photometric solutions and Roche geometry of this binary system. Through the analysis of the (O-C) diagram with all times of minimum light published so far and including hour's secular variations of orbital period and the mass transfer rate were calculated.

A Study on Reliability Optimal Design of Satellite system(Based on MSC System's structure of KOMPSAT-2) (인공위성 시스템의 신뢰도 최적 설계에 관한 연구(아리랑위성 2호의 MSC 시스템 구조를 중심으로))

  • Kim, Heung-Seob;Jeon, Geon-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1150-1159
    • /
    • 2011
  • Reliability is defined as a probability that a system will operate properly for a specified period of time under the design operating conditions without failure. Reliability-Redundancy Optimization Problem(RROP) involves selection of components with multiple choices, redundancy levels and redundancy strategy(Active or Standby) for maximizing system reliability with constraints such as cost, weight, etc. Based on the design configuration of Multi-Spectral Camera(MSC) system of KOMPSAT-2, the mathematical programming model for RROP is suggested in this study. Due to the nature of RROP, i.e. NP-hard problem, Parallel Particle Swarm Optimization(PPSO) algorithm is proposed to solve it. The result of the numerical experiment for RROP is presented as instance of recommended design configuration at some mission time.

PIV Applications for Flow Analysis of Tetrapod and Artificial Reef (소파블록과 인공어초 주위의 유동 해석을 위한 PIV 적용)

  • Lee Gyoung-Woo;Jo Dae-Hwan;Kim Ho;Lee Seung-Keon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.141-146
    • /
    • 2005
  • This paper an application example of PIV system for analyzing the flow of submerged structure. In this paper, we introduce an analysis method to predict the characteristics of flow around the neighboring fields of tetrapod and fishing reef in order to develop a high performance model. Flowing phenomenon according to velocity distribution and flow separation around the submersed body were obtained by PIV system. Flow visualization has conducted in a circulating water channel by a high speed camera and etc.

  • PDF

The effects of physical factors in SPECT (물리적 요소가 SPECT 영상에 미치는 영향)

  • 손혜경;김희중;나상균;이희경
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.65-77
    • /
    • 1996
  • Using the 2-D and 3-D Hoffman brain phantom, 3-D Jaszczak phantom and Single Photon Emission Computed Tomography, the effects of data acquisition parameter, attenuation, noise, scatter and reconstruction algorithm on image quantitation as well as image quality were studied. For the data acquisition parameters, the images were acquired by changing the increment angle of rotation and the radius. The less increment angle of rotation resulted in superior image quality. Smaller radius from the center of rotation gave better image quality, since the resolution degraded as increasing the distance from detector to object increased. Using the flood data in Jaszczak phantom, the optimal attenuation coefficients were derived as 0.12cm$\^$-1/ for all collimators. Consequently, the all images were corrected for attenuation using the derived attenuation coefficients. It showed concave line profile without attenuation correction and flat line profile with attenuation correction in flood data obtained with jaszczak phantom. And the attenuation correction improved both image qulity and image quantitation. To study the effects of noise, the images were acquired for 1min, 2min, 5min, 10min, and 20min. The 20min image showed much better noise characteristics than 1min image indicating that increasing the counting time reduces the noise characteristics which follow the Poisson distribution. The images were also acquired using dual-energy windows, one for main photopeak and another one for scatter peak. The images were then compared with and without scatter correction. Scatter correction improved image quality so that the cold sphere and bar pattern in Jaszczak phantom were clearly visualized. Scatter correction was also applied to 3-D Hoffman brain phantom and resulted in better image quality. In conclusion, the SPECT images were significantly affected by the factors of data acquisition parameter, attenuation, noise, scatter, and reconstruction algorithm and these factors must be optimized or corrected to obtain the useful SPECT data in clinical applications.

  • PDF

Simulation of Scooped Swing in High Bar Using Lagrange's Method : A Case Study (라그랑지 방법을 이용할 철봉 몸굽혀 휘돌기 동작의 시뮬레이션)

  • Hah, Chong-Ku
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.234-240
    • /
    • 2007
  • The purpose of this paper was to architecture optimal model of the scooped swing in high bar. The scooped swing was modeled to the double pendulum and was simulated with the Lagrange's equation of motion. Lagrange's method based on a energy approaching method was implemented as a equation of motion. The subject was a national man-gymnast(age 18yrs, height 153 cut mass 48 kg) and the high bar of SPIETH company was used to measure the scooped swing. Qualisys system(six MCU-240 cameras, QTM software)was used to capture data for imaging analysis. The solution of a model and data processing were solved in Mathematica5.0. The results were as follows: First model value of maximum bar displacement was longer than experimental value, that is, 0.02 m. Second, both angular pattern of segment1(HAT) had a increasing curve but curve patterns had a different concave and convex me. Third the experimental value of maximum angular angle of segment2(total leg) had larger than model value, that is, $4^{\circ}$. Conclusively, model parameters were quasi-optimized to obtain a quasi-match between simulated and actual performances. It hopes to simulate a human model by means of integrating musculoskeletal and neuromuscular system in the future study.

Severity and Characteristics of Speeding Offenders at Signalized Intersection (신호교차로의 과속운전자 특성 및 심각도 분석)

  • PARK, Jeong Soon;OH, Ju Taek;CHO, Kyu Chul
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.11-24
    • /
    • 2017
  • Although many efforts to stop speeding or inappropriate speed, it failed to reduce the number of speeding-related crashes. Therefore, it is important to analyze the characteristics of speeding offenders and the cause of speeding at hot spots. In this study, we investigate the level of severity in speeding by the characteristics of speeding offenders using the Ordered Logistics Regression Models(OLRM). For the analysis, we use the speeding data collected by 39 traffic enforcement cameras in city of Cheongju and other related data including the speeding ticket history of drivers during the most recent 3 years, their demographic characteristics, their own vehicles, and road environment factors. The major results of this study are as follows. Firstly, commercial fleet drivers are more likely to repeat the conviction of high-range speeding with more than 30km/h over speed limits than other drivers. Secondly, mid-range speeding are observed as 21,462 frequency which is 76.7% of total speeding frequency and occurred mostly at suburban and rural area. It concludes that contributory factors affecting the severity of speeding at signalized intersection are drivers' speeding offence history, posted speed limits, time of day, gender of driver, and location of the intersection as show by the OLRM developed in this study(McFadden R-square : 0.296).

A Study on forest fires Prediction and Detection Algorithm using Intelligent Context-awareness sensor (상황인지 센서를 활용한 지능형 산불 이동 예측 및 탐지 알고리즘에 관한 연구)

  • Kim, Hyeng-jun;Shin, Gyu-young;Woo, Byeong-hun;Koo, Nam-kyoung;Jang, Kyung-sik;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1506-1514
    • /
    • 2015
  • In this paper, we proposed a forest fires prediction and detection system. It could provide a situation of fire prediction and detection methods using context awareness sensor. A fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire in complex situations. In addition, it is possible to differential management of intensive fire detection and prediction for required dividing the state of fire zone. Therefore we propose an algorithm to determine the prediction and detection from the fire parameters as an temperature, humidity, Co2 and the flame in real-time by using a context awareness sensor and also suggest algorithm that provide the path of fire diffusion and service the secure safety zone prediction.

Accident Prevention and Safety Management System for a Children School Bus (어린이 통학버스 사고 방지 및 안전 관리 시스템)

  • Kim, Hyeonju;Lee, Seungmin;Ham, Sojeong;Kim, Sunhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.446-452
    • /
    • 2020
  • As the use of children's school buses increases, accidents caused by the negligence of school bus drivers and ride carers have also increased significantly. To prevent such accidents, the government is coming up with various policies. We propose an accident prevention and safety management system for children's school buses. Through this system, bus drivers can easily check whether each child is seated and whether the seat belt is used, so it is possible to quickly respond to children's conditions while driving. With the ability to recognize faces by analyzing camera images, children can use a seat belt that is automatically adjusted to their height. It is therefore possible to prevent secondary injuries that may occur in the event of a traffic accident. In addition, a sleeping child-check system is provided to confirm that all children get off the bus, and a text service is provided to inform parents of their children's locations in real time. Based on Raspberry Pi, the system is implemented with cameras, pressure sensors, motors, Bluetooth modules, and so on. This proposed system was attached to a bus model to confirm that the series of functions work correctly.

Accuracy Assessment on the Stereoscope based Digital Mapping Using Unmanned Aircraft Vehicle Image (무인항공기 영상을 이용한 입체시기반 수치도화 정확도 평가)

  • Yun, Kong-Hyun;Kim, Deok-In;Song, Yeong Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • RIn this research, digital elevation models, true-ortho image and 3-dimensional digital complied data was generated and evaluated using unmanned aircraft vehicle stereoscopic images by applying photogrammetric principles. In order to implement stereoscopic vision, digital Photogrammetric Workstation should be used necessarily. For conducting this, in this study GEOMAPPER 1.0 is used. That was developed by the Ministry of Trade, Industry and Energy. To realize stereoscopic vision using two overlapping images of the unmanned aerial vehicle, the interior and exterior orientation parameters should be calculated. Especially lens distortion of non-metric camera must be accurately compensated for stereoscope. In this work. photogrammetric orientation process was conducted using commercial Software, PhotoScan 1.4. Fixed wing KRobotics KD-2 was used for the acquisition of UAV images. True-ortho photo was generated and digital topographic map was partially produced. Finally, we presented error analysis on the generated digital complied map. As the results, it is confirmed that the production of digital terrain map with a scale 1:2,500~1:3,000 is available using stereoscope method.