• 제목/요약/키워드: 카메라 모델

Search Result 1,046, Processing Time 0.028 seconds

A Design and Implementation of Streamer for Real-Time Wireless Video Surveillance System (실시간 무선 영상 감시시스템을 위한 Streamer의 설계 및 구현)

  • Lee, Jin-Young;Kim, Heung-Jun;Lee, Kwang-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.248-256
    • /
    • 2007
  • Recently, the network Infrastructure grows rapidly and the digital image compression technique has made remarkable progress. Therefore, the demand of the real-time image surveillance system which uses a network camera server has been increasing. Network Camera Server has emerged as an attractive alternative to the CCTV for the wireless video surveillance. In this article, the model of JPEG Streamer for collecting and delivering JPEG image is designed and realized as a key module for the wireless video surveillance system. The thread pool and shared memory have been used to improve the stability and efficiency of the JPEG Streamer. In addition, the concept of double buffering is of much benefit to improve the quality of real-time image. In this article, the wireless video surveillance system by using JPEG Streamer is suggested to send the real-time image through the wireless internet with the personal digital assistance (PDA).

Contrast Enhancement Method using Color Components Analysis (컬러 성분 분석을 이용한 대비 개선 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.707-714
    • /
    • 2019
  • Recently, as the sensor network technologies and camera technologies develops, there are increasing needs by combining two technologies to effectively observe or monitor the areas that are difficult for people to access by using the visual sensor network. Since the applications using visual sensors take pictures of the outdoor areas, the images may not be well contrasted due to cloudy weather or low-light time periods such as a sunset. In this paper, we first model the color characteristics according to illumination using the characteristics of visual sensors that continuously capture the same area. Using this model, a new method for improving low contrast images in real time is proposed. In order to make the model, the regions of interest consisting of the same color are set up and the changes of color according to the brightness of images are measured. The gamma function is used to model color characteristics using the measured data. It is shown by experimental results that the proposed method improves the contrast of an image by adjusting the color components of the low contrast image simply and accurately.

Violence Recognition using Deep CNN for Smart Surveillance Applications (스마트 감시 애플리케이션을 위해 Deep CNN을 이용한 폭력인식)

  • Ullah, Fath U Min;Ullah, Amin;Muhammad, Khan;Lee, Mi Young;Baik, Sung Wook
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.53-59
    • /
    • 2018
  • Due to the recent developments in computer vision technology, complex actions can be recognized with reasonable accuracy in smart cities. In contrast, violence recognition such as events related to fight and knife, has gained less attention. The capability of visual surveillance can be used for detecting fight in streets or in prison centers. In this paper, we proposed a deep learning-based violence recognition method for surveillance cameras. A convolutional neural network (CNN) model is trained and fine-tuned on available benchmark datasets of fights and knives for violence recognition. When an abnormal event is detected, an alarm can be sent to the nearest police station to take immediate action. Moreover, when the probabilities of fight and knife classes are predicted very low, this situation is considered as normal situation. The experimental results of the proposed method outperformed other state-of-the-art CNN models with high margin by achieving maximum 99.21% accuracy.

A Study on Sensor Modeling for Virtual Testing of ADS Based on MIL Simulation (MIL 시뮬레이션 기반 ADS 기능 검증을 위한 환경 센서 모델링에 관한 연구)

  • Shin, Seong-Geun;Baek, Yun-Seok;Park, Jong-Ki;Lee, Hyuck-Kee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.331-345
    • /
    • 2021
  • Virtual testing is considered a major requirement for the safety verification of autonomous driving functions. For virtual testing, both the autonomous vehicle and the driving environment should be modeled appropriately. In particular, a realistic modeling of the perception sensor system such as the one having a camera and radar is important. However, research on modeling to consistently generate realistic perception results is lacking. Therefore, this paper presents a sensor modeling method to provide realistic object detection results in a MILS (Model in the Loop Simulation) environment. First, the key parameters for modeling are defined, and the object detection characteristics of actual cameras and radar sensors are analyzed. Then, the detection characteristics of a sensor modeled in a simulation environment, based on the analysis results, are validated through a correlation coefficient analysis that considers an actual sensor.

Improved Parameter Inference for Low-Cost 3D LiDAR-Based Object Detection on Clustering Algorithms (클러스터링 알고리즘에서 저비용 3D LiDAR 기반 객체 감지를 위한 향상된 파라미터 추론)

  • Kim, Da-hyeon;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.71-78
    • /
    • 2022
  • This paper proposes an algorithm for 3D object detection by processing point cloud data of 3D LiDAR. Unlike 2D LiDAR, 3D LiDAR-based data was too vast and difficult to process in three dimensions. This paper introduces various studies based on 3D LiDAR and describes 3D LiDAR data processing. In this study, we propose a method of processing data of 3D LiDAR using clustering techniques for object detection and design an algorithm that fuses with cameras for clear and accurate 3D object detection. In addition, we study models for clustering 3D LiDAR-based data and study hyperparameter values according to models. When clustering 3D LiDAR-based data, the DBSCAN algorithm showed the most accurate results, and the hyperparameter values of DBSCAN were compared and analyzed. This study will be helpful for object detection research using 3D LiDAR in the future.

Machine Parts(O-Ring) Defect Detection Using Adaptive Binarization and Convex Hull Method Based on Deep Learning (적응형 이진화와 컨벡스 헐 기법을 적용한 심층학습 기반 기계부품(오링) 불량 판별)

  • Kim, Hyun-Tae;Seong, Eun-San
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1853-1858
    • /
    • 2021
  • O-rings fill the gaps between mechanical parts. Until now, the sorting of defective products has been performed visually and manually, so classification errors often occur. Therefore, a camera-based defect classification system without human intervention is required. However, a binarization process is required to separate the required region from the background in the camera input image. In this paper, an adaptive binarization technique that considers the surrounding pixel values is applied to solve the problem that single-threshold binarization is difficult to apply due to factors such as changes in ambient lighting or reflections. In addition, the convex hull technique is also applied to compensate for the missing pixel part. And the learning model to be applied to the separated region applies the residual error-based deep learning neural network model, which is advantageous when the defective characteristic is non-linear. It is suggested that the proposed system through experiments can be applied to the automation of O-ring defect detection.

Designing a smart safe transportation system within a university using object detection algorithm

  • Na Young Lee;Geon Lee;Min Seop Lee;Yun Jung Hong;In-Beom Yang;Jiyoung Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.51-59
    • /
    • 2024
  • In this paper, we propose a novel traffic safety system designed to reduce pedestrian traffic accidents and enhance safety on university campuses. The system involves real-time detection of vehicle speeds in designated areas and the interaction between vehicles and pedestrians at crosswalks. Utilizing the YOLOv5s model and Deep SORT method, the system performs speed measurement and object tracking within specified zones. Second, a condition-based output system is developed for crosswalk areas using the YOLOv5s object detection model to differentiate between pedestrians and vehicles. The functionality of the system was validated in real-time operation. Our system is cost-effective, allowing installation using ordinary smartphones or surveillance cameras. It is anticipated that the system, applicable not only on university campuses but also in similar problem areas, will serve as a solution to enhance safety for both vehicles and pedestrians.

Video-based Inventory Management and Theft Prevention for Unmanned Stores (재고 관리 및 도난 방지를 위한 영상분석 기반 무인 매장 관리 시스템)

  • Soojin Lee;Jiyoung Moon;Haein Park;Jiheon Kang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.77-89
    • /
    • 2024
  • This paper presents an unmanned store management system that can provide inventory management and theft prevention for displayed products using a small camera that can monitor the shelves of sold products in small and medium-sized stores. This system is a service solution that integrates object recognition, real-time communication, security management, access management, and mobile authentication. The proposed system uses a custom YOLOv5-x model to recognize objects on the display, measure quantities in real time, and support real-time data communication with servers through Raspberry Pie. In addition, the number of objects in the database and the object recognition results are compared to detect suspected theft situations and provide burial images at the time of theft. The proposed unmanned store solution is expected to improve the efficiency of small and medium-sized unmanned store operations and contribute to responding to theft.

Research on Drivable Road Area Recognition and Real-Time Tracking Techniques Based on YOLOv8 Algorithm (YOLOv8 알고리즘 기반의 주행 가능한 도로 영역 인식과 실시간 추적 기법에 관한 연구)

  • Jung-Hee Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.563-570
    • /
    • 2024
  • This paper proposes a method to recognize and track drivable lane areas to assist the driver. The main topic is designing a deep-based network that predicts drivable road areas using computer vision and deep learning technology based on images acquired in real time through a camera installed in the center of the windshield inside the vehicle. This study aims to develop a new model trained with data directly obtained from cameras using the YOLO algorithm. It is expected to play a role in assisting the driver's driving by visualizing the exact location of the vehicle on the actual road consistent with the actual image and displaying and tracking the drivable lane area. As a result of the experiment, it was possible to track the drivable road area in most cases, but in bad weather such as heavy rain at night, there were cases where lanes were not accurately recognized, so improvement in model performance is needed to solve this problem.

Design of FPGA Camera Module with AVB based Multi-viewer for Bus-safety (AVB 기반의 버스안전용 멀티뷰어의 FPGA 카메라모듈 설계)

  • Kim, Dong-jin;Shin, Wan-soo;Park, Jong-bae;Kang, Min-goo
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.11-17
    • /
    • 2016
  • In this paper, we proposed a multi-viewer system with multiple HD cameras based AVB(Audio Video Bridge) ethernet cable using IP networking, and FPGA(Xilinx Zynq 702) for bus safety systems. This AVB (IEEE802.1BA) system can be designed for the low latency based on FPGA, and transmit real-time with HD video and audio signals in a vehicle network. The proposed multi-viewer platform can multiplex H.264 video signals from 4 wide-angle HD cameras with existed ethernet 1Gbps. and 2-wire 100Mbps cables. The design of Zynq 702 based low latency to H.264 AVC CODEC was proposed for the minimization of time-delay in the HD video transmission of car area network, too. And the performance of PSNR(Peak Signal-to-noise-ratio) was analyzed with the reference model JM for encoding and decoding results in H.264 AVC CODEC. These PSNR values can be confirmed according the theoretical and HW result from the signal of H.264 AVC CODEC based on Zynq 702 the multi-viewer with multiple cameras. As a result, proposed AVB multi-viewer platform with multiple cameras can be used for the surveillance of audio and video around a bus for the safety due to the low latency of H.264 AVC CODEC design.