• Title/Summary/Keyword: 카메라 동작 검출

Search Result 106, Processing Time 0.026 seconds

Efficient Intermediate Joint Estimation using the UKF based on the Numerical Inverse Kinematics (수치적인 역운동학 기반 UKF를 이용한 효율적인 중간 관절 추정)

  • Seo, Yung-Ho;Lee, Jun-Sung;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.39-47
    • /
    • 2010
  • A research of image-based articulated pose estimation has some problems such as detection of human feature, precise pose estimation, and real-time performance. In particular, various methods are currently presented for recovering many joints of human body. We propose the novel numerical inverse kinematics improved with the UKF(unscented Kalman filter) in order to estimate the human pose in real-time. An existing numerical inverse kinematics is required many iterations for solving the optimal estimation and has some problems such as the singularity of jacobian matrix and a local minima. To solve these problems, we combine the UKF as a tool for optimal state estimation with the numerical inverse kinematics. Combining the solution of the numerical inverse kinematics with the sampling based UKF provides the stability and rapid convergence to optimal estimate. In order to estimate the human pose, we extract the interesting human body using both background subtraction and skin color detection algorithm. We localize its 3D position with the camera geometry. Next, through we use the UKF based numerical inverse kinematics, we generate the intermediate joints that are not detect from the images. Proposed method complements the defect of numerical inverse kinematics such as a computational complexity and an accuracy of estimation.

Vision-based Motion Control for the Immersive Interaction with a Mobile Augmented Reality Object (모바일 증강현실 물체와 몰입형 상호작용을 위한 비전기반 동작제어)

  • Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.119-129
    • /
    • 2011
  • Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. Especially, recent increasing demands for mobile augmented reality require the development of efficient interactive technologies between the augmented virtual object and users. This paper presents a novel approach to construct marker-less mobile augmented reality object and control the object. Replacing a traditional market, the human hand interface is used for marker-less mobile augmented reality system. In order to implement the marker-less mobile augmented system in the limited resources of mobile device compared with the desktop environments, we proposed a method to extract an optimal hand region which plays a role of the marker and augment object in a realtime fashion by using the camera attached on mobile device. The optimal hand region detection can be composed of detecting hand region with YCbCr skin color model and extracting the optimal rectangle region with Rotating Calipers Algorithm. The extracted optimal rectangle region takes a role of traditional marker. The proposed method resolved the problem of missing the track of fingertips when the hand is rotated or occluded in the hand marker system. From the experiment, we can prove that the proposed framework can effectively construct and control the augmented virtual object in the mobile environments.

A Real-time Hand Pose Recognition Method with Hidden Finger Prediction (은닉된 손가락 예측이 가능한 실시간 손 포즈 인식 방법)

  • Na, Min-Young;Choi, Jae-In;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.12 no.5
    • /
    • pp.79-88
    • /
    • 2012
  • In this paper, we present a real-time hand pose recognition method to provide an intuitive user interface through hand poses or movements without a keyboard and a mouse. For this, the areas of right and left hands are segmented from the depth camera image, and noise removal is performed. Then, the rotation angle and the centroid point of each hand area are calculated. Subsequently, a circle is expanded at regular intervals from a centroid point of the hand to detect joint points and end points of the finger by obtaining the midway points of the hand boundary crossing. Lastly, the matching between the hand information calculated previously and the hand model of previous frame is performed, and the hand model is recognized to update the hand model for the next frame. This method enables users to predict the hidden fingers through the hand model information of the previous frame using temporal coherence in consecutive frames. As a result of the experiment on various hand poses with the hidden fingers using both hands, the accuracy showed over 95% and the performance indicated over 32 fps. The proposed method can be used as a contactless input interface in presentation, advertisement, education, and game applications.

Towards 3D Modeling of Buildings using Mobile Augmented Reality and Aerial Photographs (모바일 증강 현실 및 항공사진을 이용한 건물의 3차원 모델링)

  • Kim, Se-Hwan;Ventura, Jonathan;Chang, Jae-Sik;Lee, Tae-Hee;Hollerer, Tobias
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.84-91
    • /
    • 2009
  • This paper presents an online partial 3D modeling methodology that uses a mobile augmented reality system and aerial photographs, and a tracking methodology that compares the 3D model with a video image. Instead of relying on models which are created in advance, the system generates a 3D model for a real building on the fly by combining frontal and aerial views. A user's initial pose is estimated using an aerial photograph, which is retrieved from a database according to the user's GPS coordinates, and an inertial sensor which measures pitch. We detect edges of the rooftop based on Graph cut, and find edges and a corner of the bottom by minimizing the proposed cost function. To track the user's position and orientation in real-time, feature-based tracking is carried out based on salient points on the edges and the sides of a building the user is keeping in view. We implemented camera pose estimators using both a least squares estimator and an unscented Kalman filter (UKF). We evaluated the speed and accuracy of both approaches, and we demonstrated the usefulness of our computations as important building blocks for an Anywhere Augmentation scenario.

An Implementation of Mobile Platform using Location Data Index Techniques (위치 데이터 인덱스 기법을 적용한 모바일 플랫폼구현)

  • Park, Chang-Hee;Kang, Jin-Suk;Sung, Mee-Young;Park, Jong-Song;Kim, Jang-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.1960-1972
    • /
    • 2006
  • In this thesis, GPS and the electronic mapping were used to realize such a system by recognizing license plate numbers and identifying the location of objects that move at synchronous times with simulated movement in the electronic map. As well, throughout the study, a camera attached to a PDA, one of the mobile devices, automatically recognized and confirmed acquired license plate numbers from the front and back of each cu. Using this mobile technique in a wireless network searches for specific plate numbers and information about the location of the car is transmitted to a remote sewer. The use of such a GPS-based system allows for the measurement of topography and the effective acquisition of a car's location. The information is then transmitted to a central controlling center and stored as text to be reproduced later in the form of diagrams. Getting positional information through GPS and using image-processing with a PDA makes it possible to estimate the correct information of a car's location and to transmit the specific information of the car to a control center simultaneously, so that the center will get information such as type of the cu, possibility of the defects that a car might have, and possibly to offer help with those functions. Such information can establish a mobile system that can recognize and accurately trace the location of cars.

A Study of Location Based Services Using Location Data Index Techniques (위치데이터인덱스 기법을 적용한 위치기반서버스에 관한 연구)

  • Park Chang-Hee;Kim Jang-Hyung;Kang Jin-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.595-605
    • /
    • 2006
  • In this thesis, GPS and the electronic mapping were used to realize such a system by recognizing license plate numbers and identifying the location of objects that move at synchronous times with simulated movement in the electronic map. As well, throughout the study, a camera attached to a PDA, one of the mobile devices, automatically recognized and confirmed acquired license plate numbers from the front and back of each car. Using this mobile technique in a wireless network, searches for specific plate numbers and information about the location of the car is transmitted to a remote server. The use of such a GPS-based system allows for the measurement of topography and the effective acquisition of a car's location. The information is then transmitted to a central controlling center and stored as text to be reproduced later in the form of diagrams. Getting positional information through GPS and using image-processing with a PDA makes it possible to estimate the correct information of a car's location and to transmit the specific information of the car to a control center simultaneously, so that the center will get information such as type of the car, possibility of the defects that a car might have, and possibly to offer help with those functions. Such information can establish a mobile system that can recognize and accurately trace the location of cars.

  • PDF