The Journal of Korean Institute of Communications and Information Sciences
/
v.28
no.3C
/
pp.307-314
/
2003
In the general multiple video object coder, more interested objects such as speaker or moving object is consistently coded with higher priority. Since the priority of each object may not be fixed in the whole sequence and be variable on frame basis, it must be adjusted in a frame. In this paper, we analyze the independent rate control algorithm and global algorithm that the QP value is controled by the static parameters, object importance or priority, target PSNR, weighted distortion. The priority among static parameters is analyzed and adjusted into dynamic parameters according to the visual interests or importance obtained by camera interface. Target PSNR and weighted distortion are proportionally derived by using magnitude, motion, and distortion. We apply those parameters for the weighted distortion control and the priority-based control resulting in the efficient bit-rate distribution. As results of this paper, we achieved that fewer bits are allocated for video objects which has less importance and more bits for those which has higher visual importance. The duration of stability in the visual quality is reduced to less than 15 frames of the coded sequence. In the aspect of PSNR, the proposed scheme shows higher quality of more than 2d13 against the conventional schemes. Thus the coding scheme interfaced to human- eye proves an efficient video coder dealing with the multiple number of video objects.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.3
/
pp.141-148
/
2021
This paper presents a method to detect zebra-crossing using deep learning which combines SegNet and ResNet. For the blind, a safe crossing system is important to know exactly where the zebra-crossings are. Zebra-crossing detection by deep learning can be a good solution to this problem and robotic vision-based assistive technologies sprung up over the past few years, which focused on specific scene objects using monocular detectors. These traditional methods have achieved significant results with relatively long processing times, and enhanced the zebra-crossing perception to a large extent. However, running all detectors jointly incurs a long latency and becomes computationally prohibitive on wearable embedded systems. In this paper, we propose a model for fast and stable segmentation of zebra-crossing from captured images. The model is improved based on a combination of SegNet and ResNet and consists of three steps. First, the input image is subsampled to extract image features and the convolutional neural network of ResNet is modified to make it the new encoder. Second, through the SegNet original up-sampling network, the abstract features are restored to the original image size. Finally, the method classifies all pixels and calculates the accuracy of each pixel. The experimental results prove the efficiency of the modified semantic segmentation algorithm with a relatively high computing speed.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.7
/
pp.262-269
/
2020
Recently, many attempts have been made to reduce the time required for payment in various shopping environments. In addition, for the Fourth Industrial Revolution era, artificial intelligence is advancing, and Internet of Things (IoT) devices are becoming more compact and cheaper. So, by integrating these two technologies, access to building an unmanned environment to save people time has become easier. In this paper, we propose a smart shopping cart system based on low-cost IoT equipment and deep-learning object-detection technology. The proposed smart cart system consists of a camera for real-time product detection, an ultrasonic sensor that acts as a trigger, a weight sensor to determine whether a product is put into or taken out of the shopping cart, an application for smartphones that provides a user interface for a virtual shopping cart, and a deep learning server where learned product data are stored. Communication between each module is through Transmission Control Protocol/Internet Protocol, a Hypertext Transmission Protocol network, a You Only Look Once darknet library, and an object detection system used by the server to recognize products. The user can check a list of items put into the smart cart via the smartphone app, and can automatically pay for them. The smart cart system proposed in this paper can be applied to unmanned stores with high cost-effectiveness.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.44
no.1
/
pp.17-25
/
2007
In most electronic imaging applications, image with high resolution(HR) are desired. HR means that pixel density within an image is high, and therefore HR image can offer more details that may be critical in various applications. Digital images that are captured by CCD and CMOS cameras usually have a very low resolution, which significantly limits the performance of image recognition systems. Image super-resolution techniques can be applied to overcome the limits of these imaging systems. Super-resolution techniques have been proposed to increase the resolution by combining information from multiple images. To techniques were consisted of the registration algorithm for estimation and shift, the nearest neighbor interpolation using weight of acquired frames and presented frames. In this paper, it is proposed the image interpolation techniques using the wavelet base function. This is applied to embody a correct edge image and natural image when expend part of the still image by applying the wavelet base function coefficient to the conventional Super-Resolution interpolation method. And the proposal algorithm in this paper is confirmed to improve the image applying the nearest neighbor interpolation algorithm, bilinear interpolation algorithm.,bicubic interpolation algorithm through the computer simulation.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.12
/
pp.660-668
/
2018
The main object of this study was to find a way to operate the marker for simulating a virtual construction using a MR(mixed reality) device. The secondary object was to find a way to extract the form-data from BIM data, and to represent the virtual object by the MR device. A tiny error of scale causes large errors of length because the architectural objects are very large. The scale was affected by the way that the camera of the MR device recognizes the marker. The method of installing and operating the marker causes length errors in the virtual object in the MR system. The experimental results showed that the error factor of the Virtual object's length was 0.47%. In addition, the distance between the markers can be decided through the results of an experiment for the multi-marker tracking system. The minimum distance between markers should be more than 5 m, and the error of length was approximately 23mm. If the represented virtual object must be less than 20mm in error, the particular mark should be installed within a 5 m radius of it. Based on this research, it is expected that utilization of the MR device will increase for the application of virtual construction simulations to construction sites.
Journal of the Korea Society of Computer and Information
/
v.27
no.8
/
pp.9-21
/
2022
In this paper, we developed a 100% detection system for entering and leaving vehicles by improving the detection rate of existing detection cameras based on the LiDAR sensor, which is one of the core technologies of the 4th industrial revolution. Since the currently operating parking lot depends only on the recognition rate of the license plate number of about 98%, there are various problems such as inconsistency in the entry/exit count, inability to make a reservation in advance due to inaccurate information provision, and inconsistency in real-time parking information. Parking status information should be managed with 100% accuracy, and for this, we built a parking lot entrance/exit detection system using LIDAR. When a parking system is developed by applying the LIDAR sensor, which is mainly used to detect vehicles and objects in autonomous vehicles, it is possible to improve the accuracy of vehicle entry/exit information and the reliability of the entry/exit count with the detected sensing information. The resolution of LIDAR was guaranteed to be 100%, and it was possible to implement so that the sum of entering (+) and exiting (-) vehicles in the parking lot was 0. As a result of testing with 3,000 actual parking lot entrances and exits, the accuracy of entering and exiting parking vehicles was 100%.
In this thesis, GPS and the electronic mapping were used to realize such a system by recognizing license plate numbers and identifying the location of objects that move at synchronous times with simulated movement in the electronic map. As well, throughout the study, a camera attached to a PDA, one of the mobile devices, automatically recognized and confirmed acquired license plate numbers from the front and back of each car. Using this mobile technique in a wireless network, searches for specific plate numbers and information about the location of the car is transmitted to a remote server. The use of such a GPS-based system allows for the measurement of topography and the effective acquisition of a car's location. The information is then transmitted to a central controlling center and stored as text to be reproduced later in the form of diagrams. Getting positional information through GPS and using image-processing with a PDA makes it possible to estimate the correct information of a car's location and to transmit the specific information of the car to a control center simultaneously, so that the center will get information such as type of the car, possibility of the defects that a car might have, and possibly to offer help with those functions. Such information can establish a mobile system that can recognize and accurately trace the location of cars.
CCTV is used for various purposes such as crime prevention, public safety reinforcement, and traffic management. However, as the range and resolution of the camera improve, there is a risk of exposing personal information in the video. Therefore, there is a need for new technologies that can identify individuals while protecting personal information in images. In this paper, we propose histogram-based singular value decomposition for object identification and tracking. The proposed method distinguishes different objects present in the image using color information of the object. For object recognition, YOLO and DeepSORT are used to detect and extract people present in the image. Color values are extracted with a black-and-white histogram using location information of the detected person. Singular value decomposition is used to extract and use only meaningful information among the extracted color values. When using singular value decomposition, the accuracy of object color extraction is increased by using the average of the upper singular value in the result. Color information extracted using singular value decomposition is compared with colors present in other images, and the same person present in different images is detected. Euclidean distance is used for color information comparison, and Top-N is used for accuracy evaluation. As a result of the evaluation, when detecting the same person using a black-and-white histogram and singular value decomposition, it recorded a maximum of 100% to a minimum of 74%.
Recently, deep neural networks such as CNN are showing excellent performance in various fields such as image classification, object recognition, visual quality enhancement, etc. However, as the model size and computational complexity of deep learning models for most applications increases, it is hard to apply neural networks to IoT and mobile environments. Therefore, neural network compression algorithms for reducing the model size while keeping the performance have been being studied. In this paper, we apply few compression methods to CNN models and evaluate their performances in the embedded environment. For evaluate the performance, the classification performance and inference time of the original CNN models and the compressed CNN models on the image inputted by the camera are evaluated in the embedded board equipped with QCS605, which is a customized AI chip. In this paper, a few CNN models of MobileNetV2, ResNet50, and VGG-16 are compressed by applying the methods of pruning and matrix decomposition. The experimental results show that the compressed models give not only the model size reduction of 1.3~11.2 times at a classification performance loss of less than 2% compared to the original model, but also the inference time reduction of 1.2~2.21 times, and the memory reduction of 1.2~3.8 times in the embedded board.
Kim Sam-Yong;Kang Geong-Kwan;Ryu Young-Woo;Oh Se-Young;Kim Kwang-Soo;Park Sang-Cheol;Kim Jin-Won
Journal of the Institute of Electronics Engineers of Korea TC
/
v.43
no.9
s.351
/
pp.49-59
/
2006
DAS(Driver Assistance Systems) support the driver's decision making to increase safety and comfort by issuing the naming signals or even exert the active control in case of dangerous conditions. Most previous research and products intend to offer only a single warning service like the lane departure warning, collision warning, lane change assistance, etc. Although these functions elevate the driving safety and convenience to a certain degree, New type of DAS will be developed to integrate all the important functions with an efficient HMI (Human-Machine Interface) framework for various driving conditions. We propose an all-around sensing based on the integrated DAS that can also remove the blind spots using 2 cameras and 8 sonars, recognize the driving environment by lane and vehicle detection, construct a novel birds-eye HMI for easy comprehension. it can give proper warning in case of imminent danger.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.