• Title/Summary/Keyword: 카메라 기반 인식

Search Result 702, Processing Time 0.029 seconds

Artificial Intelligence-Based Harmful Birds Detection Control System (인공지능 기반 유해조류 탐지 관제 시스템)

  • Sim, Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.175-182
    • /
    • 2021
  • The purpose of this paper is to develop a machine learning-based marine drone to prevent the farming from harmful birds such as ducks. Existing drones have been developed as marine drones to solve the problem of being lost if they collide with birds in the air or are in the sea. We designed a CNN-based learning algorithm to judge harmful birds that appear on the sea by maritime drones operating by autonomous driving. It is designed to transmit video to the control PC by connecting the Raspberry Pi to the camera for location recognition and tracking of harmful birds. After creating a map linked with the location GPS coordinates in advance at the mobile-based control center, the GPS location value for the location of the harmful bird is received and provided, so that a marine drone is dispatched to combat the harmful bird. A bird fighting drone system was designed and implemented.

Development of a Web Platform System for Worker Protection using EEG Emotion Classification (뇌파 기반 감정 분류를 활용한 작업자 보호를 위한 웹 플랫폼 시스템 개발)

  • Ssang-Hee Seo
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.37-44
    • /
    • 2023
  • As a primary technology of Industry 4.0, human-robot collaboration (HRC) requires additional measures to ensure worker safety. Previous studies on avoiding collisions between collaborative robots and workers mainly detect collisions based on sensors and cameras attached to the robot. This method requires complex algorithms to continuously track robots, people, and objects and has the disadvantage of not being able to respond quickly to changes in the work environment. The present study was conducted to implement a web-based platform that manages collaborative robots by recognizing the emotions of workers - specifically their perception of danger - in the collaborative process. To this end, we developed a web-based application that collects and stores emotion-related brain waves via a wearable device; a deep-learning model that extracts and classifies the characteristics of neutral, positive, and negative emotions; and an Internet-of-things (IoT) interface program that controls motor operation according to classified emotions. We conducted a comparative analysis of our system's performance using a public open dataset and a dataset collected through actual measurement, achieving validation accuracies of 96.8% and 70.7%, respectively.

A Study on forest fires Prediction and Detection Algorithm using Intelligent Context-awareness sensor (상황인지 센서를 활용한 지능형 산불 이동 예측 및 탐지 알고리즘에 관한 연구)

  • Kim, Hyeng-jun;Shin, Gyu-young;Woo, Byeong-hun;Koo, Nam-kyoung;Jang, Kyung-sik;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1506-1514
    • /
    • 2015
  • In this paper, we proposed a forest fires prediction and detection system. It could provide a situation of fire prediction and detection methods using context awareness sensor. A fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire in complex situations. In addition, it is possible to differential management of intensive fire detection and prediction for required dividing the state of fire zone. Therefore we propose an algorithm to determine the prediction and detection from the fire parameters as an temperature, humidity, Co2 and the flame in real-time by using a context awareness sensor and also suggest algorithm that provide the path of fire diffusion and service the secure safety zone prediction.

A Design and Implementation of Fitness Application Based on Kinect Sensor

  • Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • In this paper, we design and implement KITNESS, a windows application that feeds back the accuracy of fitness motions based on Kinect sensors. The feature of this application is to use Kinect's camera and joint recognition sensor to give feedback to the user to exercise in the correct fitness position. At this time, the distance between the user and the Kinect is measured using Kinect's IR Emitter and IR Depth Sensor, and the joint, which is the user's joint position, and the Skeleton data of each joint are measured. Using this data, a certain distance is calculated for each joint position and posture of the user, and the accuracy of the posture is determined. And it is implemented so that users can check their posture through Kinect's RGB camera. That is, if the user's posture is correct, the skeleton information is displayed as a green line, and if it is not correct, the inaccurate part is displayed as a red line to inform intuitively. Through this application, the user receives feedback on the accuracy of the exercise position, so he can exercise himself in the correct position. This application classifies the exercise area into three areas: neck, waist, and leg, and increases the recognition rate of Kinect by excluding positions that Kinect does not recognize due to overlapping joints in the position of each exercise area. And at the end of the application, the last exercise is shown as an image for 5 seconds to inspire a sense of accomplishment and to continuously exercise.

Multiple Moving Object Detection Using Different Algorithms (이종 알고리즘을 융합한 다중 이동객체 검출)

  • Heo, Seong-Nam;Son, Hyeon-Sik;Moon, Byungin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1828-1836
    • /
    • 2015
  • Object tracking algorithms can reduce computational cost by avoiding computation over the whole image through the selection of region of interests based on object detection. So, accurate object detection is an important task for object tracking. The background subtraction algorithm has been widely used in moving object detection using a stationary camera. However, it has the problem of object detection error due to incorrect background modeling, whereas the method of background modeling has been improved by many researches. This paper proposes a new moving object detection algorithm to overcome the drawback of the conventional background subtraction algorithm by combining the background subtraction algorithm with the motion history image algorithm that is usually used in gesture detection. Although the proposed algorithm demands more processing time because of time taken for combining two algorithms, it meet the real-time processing requirement. Moreover, experimental results show that it has higher accuracy compared with the previous two algorithms.

A Study on a Smart Digital Signage Using Bayesian Age Estimation Technique for the Next Generation Airport Service (차세대 공항 서비스를 위한 베이지안 연령추정기법을 이용하는 스마트 디지털 사이니지에 대한 연구)

  • Kim, Chun-Ho;Lee, Dong Woo;Baek, Gyeong Min;Moon, Seong Yeop;Heo, Chan;Na, Jong Whoa;Ohn, Seung-Yup;Choi, Woo Young
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.533-540
    • /
    • 2014
  • We propose an age estimation-based smart digital signage for the next-generation airport service. The proposed system can recognize the face of the customer so that it can display the selective information. Using a webcam, the system captures the face of the customer and estimates the age of the customer by calculating the wrinkle density of the face and applying bayesian classifier. The developed age estimation method is tested with a face database for the performance evaluation. We expect the new digital signage may improve the satisfaction of customers of the airport business.

Deep learning based symbol recognition for the visually impaired (시각장애인을 위한 딥러닝기반 심볼인식)

  • Park, Sangheon;Jeon, Taejae;Kim, Sanghyuk;Lee, Sangyoun;Kim, Juwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.249-256
    • /
    • 2016
  • Recently, a number of techniques to ensure the free walking for the visually impaired and transportation vulnerable have been studied. As a device for free walking, there are such as a smart cane and smart glasses to use the computer vision, ultrasonic sensor, acceleration sensor technology. In a typical technique, such as techniques for finds object and detect obstacles and walking area and recognizes the symbol information for notice environment information. In this paper, we studied recognization algorithm of the selected symbols that are required to visually impaired, with the deep learning algorithm. As a results, Use CNN(Convolutional Nueral Network) technique used in the field of deep-learning image processing, and analyzed by comparing through experimentation with various deep learning architectures.

The Weldability Estimation for the Purpose of Real-Time Inspection and Control (실시간 검사 및 제어를 목적으로 한 용접성 평가)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.605-610
    • /
    • 2008
  • Through welding fabrication, user can feel unsatisfaction of surface quality because of welded defects, Generally speaking, these are called weld defects. For checking these defects effectively without time loss effectively, weldability estimation system setup is an urgent thing for detecting whole specimen quality. In this study, by laser vision camera, catching a rawdata on welded specimen profiles, treating vision processing with these data, qualitative defects are estimated from getting these information at first. At the same time, for detecting quantitative defects, whole specimen weldability estimation is pursued by multifeature pattern recognition, which is a kind of fuzzy pattern recognition. For user friendly, by weldability estimation results are shown each profiles, final reports and visual graphics method, user can easily determined weldability. By applying these system to welding fabrication, these technologies are contribution to on-line weldability estimation.

Realistic and Fast Depth-of-Field Rendering in Direct Volume Rendering (직접 볼륨 렌더링에서 사실적인 고속 피사계 심도 렌더링)

  • Kang, Jiseon;Lee, Jeongjin;Shin, Yeong-Gil;Kim, Bohyoung
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.75-83
    • /
    • 2019
  • Direct volume rendering is a widely used method for visualizing three-dimensional volume data such as medical images. This paper proposes a method for applying depth-of-field effects to volume ray-casting to enable more realistic depth-of-filed rendering in direct volume rendering. The proposed method exploits a camera model based on the human perceptual model and can obtain realistic images with a limited number of rays using jittered lens sampling. It also enables interactive exploration of volume data by on-the-fly calculating depth-of-field in the GPU pipeline without preprocessing. In the experiment with various data including medical images, we demonstrated that depth-of-field images with better depth perception were generated 2.6 to 4 times faster than the conventional method.

Development of Ubuntu-based Raspberry Pi 3 of the image recognition system (우분투 기반 라즈베리 파이3의 영상 인식 시스템 개발)

  • Kim, Gyu-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.868-871
    • /
    • 2016
  • Recently, Unmanned vehicle and Wearable Technology using iot research is being carried out. The unmanned vehicle is the result of it technology. Robots, autonomous navigation vehicle and obstacle avoidance, data communications, power, and image processing, technology integration of a unmanned vehicle or an unmanned robot. The final goal of the unmanned vehicle manual not autonomous by destination safely and quickly reaching. This paper managed to cover One of the key skills of unmanned vehicle is to image processing. Currently battery technology of unmanned vehicle can drive for up to 1 hours. Therefore, we use the Raspberry Pi 3 to reduce power consumption to a minimum. Using the Raspberry Pi 3 and to develop an image recognition system. The goal is to propose a system that recognizes all the objects in the image received from the camera.

  • PDF