• Title/Summary/Keyword: 카메라 기반 인식

Search Result 700, Processing Time 0.029 seconds

Multiview Tracking using Active Shape Model (능동형태모델 기반 다시점 영상 추적)

  • Im, Jae-Hyun;Kim, Dae-Hee;Choi, Jong-Ho;Paik, Joon-Ki
    • KSCI Review
    • /
    • v.15 no.1
    • /
    • pp.179-183
    • /
    • 2007
  • 다시점에서의 다중 객체 추적은 여러 분야에서 연구되고 있다. 다시점 영상 추적은 두 객체가 서로 근접하면 하나로 인식하는 문제점을 가지고 있다. 이러한 문제를 해결하기 위한 하나의 방법으로 능동형태모델(active shape mode: ASM)을 들 수 있다 ASM은 훈련집합을 이용하여 다른 객체에 가려진 목표 객체를 추적할 수 있다. 본 논문에서는 겹쳐진 객체를 추적하기 위해 ASM 기반의 다시점 추적 알고리듬(Multi-view tracking using ASM: MVTA)에 대해서 제안한다. 제안된 추적 방법은 (i) 영상 획득, (ii) 객체 추출, (iii) 객체 추적, 그리고 (iv) 현재 형태의 업데이트, 4가지 단계로 나눌 수 있다. 첫 번째 단계에서는 여러 대의 카메라를 사용해서 다시점 영상을 획득하며, 두 번째 단계에서는 객체를 배경으로부터 분리하며, 겹쳐진 객체로부터 목표 객체를 분리해낸다. 세 번째 단계에서는 추적을 위해 ASM을 사용하며, 마지막 단계인 네 번째 단계는 현재 입력 영상의 업데이트이다. 실험결과 제안한 MVTA는 겹쳐진 객체를 추적 시에 생기는 문제에 대해서 향상 된 결과를 보여준다.

  • PDF

Disaster-Detecting Algorithm at Nearby Rivers Based on Image Processing (영상처리 기반의 하천인근 재난감지 알고리즘)

  • Lee, Jae-Won;Kim, Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.272-274
    • /
    • 2015
  • 본 논문에서는 하천 인근의 재난 방지를 위한 효율적인 재난감지 알고리즘을 제안한다. 제안하는 알고리즘은 영상처리를 기반으로 임계값을 자동으로 변경시켜 물과 물이 아닌 영역을 분리한다. 수위감지 알고리즘을 단순 물의 색상 정보만을 이용해 분석한다면, 야간 저조도, 폭우와 같은 상황 등에서 알고리즘 성능이 저하될 우려가 있다, 이를 해결하기 위해서 물의 색상 정보뿐 아니라 물의 흔들림 정도도 함께 고려하여 물의 영역을 찾아낸다. 또한 보다 안정적인 수위 분포를 분석하기 위해서 시간과 공간에 대한 필터링을 추가하여 빗물, 물결, 카메라의 화이트 노이즈 등 다양한 노이즈에 보다 안정적으로 수위 분포를 분석한다. 본 논문에서 제안하는 수위감지 알고리즘을 적용한다면, 센서, 목자판 인식 등 이전의 수위계측 방식보다 성능, 비용 면에서 모두 우수할 것으로 예측된다.

  • PDF

Kalman Filtering and Mean Shift for Real Time Eye Tracking Under Active IR Illumination (능동적 적외선 조명하에서 실시간 눈 추적을 위한 Kalman 필터링과 평균 이동)

  • 박호식;정연숙;손동주;나상동;배철수
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.203-206
    • /
    • 2004
  • 본 논문에서는 다양하고 실재적인 조명과 얼굴방향에 관계없이 원활하게 실시간으로 눈을 추적하는 방법을 제안하고자 한다. 기존의 능동적 적외선 조명을 이용한 대다수의 눈 추적장치들은 밝은 동공효과를 이용하고 있다. 그러나, 눈 깜박임, 외부 조명 간섭과 같은 여러 가지 요소로 인하여 동공들이 충분하게 밝게 나타나지 않는 경우가 많이 있다. 그러므로, 본 논문에서는 능동적 적외선 조명을 기반으로 한 칼만 필터링을 이용한 객체 추적 방법과 전형적인 외관을 기반으로 객체 인식 방법을 결합함으로써, 외부 조명의 간섭으로 밝은 동공 효과가 나타나지 않는 경우에도 견실하게 눈을 검출하고 추적 할 수 있는 방법을 제안한다. 눈 검출과 추적을 위해 SVM과 평균 이동 추적 방법을 사용하였고, 적외선 조명과 카메라를 포함한 영상 획득 장치를 구성하여 기존의 방법과 비교 실험한 결과 제안된 방법은 일부 피검자의 경우 100% 완벽하게 눈 추적을 할 수 있음을 보여 주었다.

  • PDF

Development of autonomous mobile patrol robot using SLAM (SLAM을 이용한 자율주행 순찰 로봇 개발)

  • Yun, Tae-Jin;Woo, Seon-jin;Kim, Cheol-jin;Kim, Ill-kwon;Lee, Sang-yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.437-438
    • /
    • 2019
  • 본 논문에서는 ROS(Robot Operating System)기반으로한 로봇(Robot)에 레이저 거리 센서(LiDAR)를 설치하여 SLAM(Simultaneous Localization and Mapping : 동시적 위치 추적 지도 작성)기법으로 맵 정보를 습득하고, 저장하여 이를 기반으로 장애물과 건물의 실내 복도 안전하고 정확하게 순찰 할 수 있도록 하였다. 또한, 순찰 로봇(Robot)에 장착된 Raspberry카메라와 OpenCV 영상인식 기술을 이용하여 실시간 영상으로 실내 복도를 순찰하면서 사전에 설정된 특이사항이 있을 시 발견하고 기록하도록 시스템을 개발하였다.

  • PDF

Short-Distance Localization Technique of Sensor Network with Computer Vision (센서 네트웍을 위한 컴퓨터 비젼 기반 근거리 로컬라이제이션)

  • Lee, Kyu-Hwa;Song, Ha-Yoon;Park, Jun
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.941-944
    • /
    • 2007
  • 본 연구에서는 센서 네트웍과 컴퓨터 비전 시스템을 이용한 모바일 센서 네트워크(Mobile Sensor Network) 의 응용에 관한 실험을 수행하였다. 주된 내용으로는 모바일 센서를 탑재한 차량을 이용한 로컬라이제이션(Localization) 과 팀원 인식(Team Identification) 등에 관련된 방법을 포함한다. 본 시스템은 시뮬레이션을 통하여 기획을 하였으며 자체 설계한 하드웨어와 내장형 소프트웨어를 탑재하여 주어진 기능을 수행하도록 하도록 하는 한편, 모바일 센서의 역할을 할 수 있도록 다양한 센서를 장착할 수 있도록 설계되었다. 또한 전자나침반을 이용한 방위각 측정능력, 초음파 센서를 이용한 근거리 장애물 회피 능력, 적외선 발광 다이오드(IR-LED)와 적외선 필터를 씌운 카메라를 이용한 동료의 위치 파악 능력등을 통하여 로컬라이제이션에 도움이 되도록 한다. 통신을 위하여 IEEE 802.11g 프로토콜에 기반을 둔 통신 능력을 가지며 차량간의 통신도 같은 프로토콜을 통하여 이루어지게 된다.

Recognition and Modeling of 3D Environment based on Local Invariant Features (지역적 불변특징 기반의 3차원 환경인식 및 모델링)

  • Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 2006
  • This paper presents a novel approach to real-time recognition of 3D environment and objects for various applications such as intelligent robots, intelligent vehicles, intelligent buildings,..etc. First, we establish the three fundamental principles that humans use for recognizing and interacting with the environment. These principles have led to the development of an integrated approach to real-time 3D recognition and modeling, as follows: 1) It starts with a rapid but approximate characterization of the geometric configuration of workspace by identifying global plane features. 2) It quickly recognizes known objects in environment and replaces them by their models in database based on 3D registration. 3) It models the geometric details the geometric details on the fly adaptively to the need of the given task based on a multi-resolution octree representation. SIFT features with their 3D position data, referred to here as stereo-sis SIFT, are used extensively, together with point clouds, for fast extraction of global plane features, for fast recognition of objects, for fast registration of scenes, as well as for overcoming incomplete and noisy nature of point clouds.

  • PDF

YOLO-based Traffic Signal Detection for Identifying the Violation of Motorbike Riders (YOLO 기반의 교통 신호등 인식을 통한 오토바이 운전자의 신호 위반 여부 확인)

  • Wahyutama, Aria Bisma;Hwang, Mintae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.141-143
    • /
    • 2022
  • This paper presented a new technology to identify traffic violations of motorbike riders by detecting the traffic signal using You Only Look Once (YOLO) object detection. The hardware module that is mounted on the front of the motorbike consists of Raspberry Pi with a camera to run the YOLO object detection, a GPS module to acquire the motorcycle's coordinate, and a LoRa communication module to send the data to a cloud DB. The main goal of the software is to determine whether a motorbike has violated a traffic signal. This paper proposes a function to recognize the red traffic signal colour with its movement inside the camera angle and determine that the traffic signal violation happens if the traffic signal is moving to the right direction (the rider turns left) or moving to the top direction (the riders goes straight). Furthermore, if a motorbike rider is violated the signal, the rider's personal information (name, mobile phone number, etc), the snapshot of the violation situation, rider's location, and date/time will be sent to a cloud DB. The violation information will be delivered to the driver's smartphone as a push notification and the local police station to be used for issuing violation tickets, which is expected to prevent motorbike riders from violating traffic signals.

  • PDF

A Stereo Image Recognition-Based Method for measuring the volume of 3D Object (스테레오 영상 인식에 기반한 3D 물체의 부피계측방법)

  • Jeong, Yun-Su;Lee, Hae-Won;Kim, Jin-Seok;Won, Jong-Un
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.237-244
    • /
    • 2002
  • In this paper, we propose a stereo image recognition-based method for measuring the volume of the rectangular parallelepiped. The method measures the volume from two images captured with two CCD (charge coupled device) cameras by sequential processes such as ROI (region of interest) extraction, feature extraction, and stereo matching-based vortex recognition. The proposed method makes it possible to measure the volume of the 3D object at high speed because only a few features are used in the process of stereo matching. From experimental results, it is demonstrated that this method is very effective for measuring the volume of the rectangular parallelepiped at high speed.

A Study on Transport Robot for Autonomous Driving to a Destination Based on QR Code in an Indoor Environment (실내 환경에서 QR 코드 기반 목적지 자율주행을 위한 운반 로봇에 관한 연구)

  • Se-Jun Park
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.26-38
    • /
    • 2023
  • This paper is a study on a transport robot capable of autonomously driving to a destination using a QR code in an indoor environment. The transport robot was designed and manufactured by attaching a lidar sensor so that the robot can maintain a certain distance during movement by detecting the distance between the camera for recognizing the QR code and the left and right walls. For the location information of the delivery robot, the QR code image was enlarged with Lanczos resampling interpolation, then binarized with Otsu Algorithm, and detection and analysis were performed using the Zbar library. The QR code recognition experiment was performed while changing the size of the QR code and the traveling speed of the transport robot while the camera position of the transport robot and the height of the QR code were fixed at 192cm. When the QR code size was 9cm × 9cm The recognition rate was 99.7% and almost 100% when the traveling speed of the transport robot was less than about 0.5m/s. Based on the QR code recognition rate, an experiment was conducted on the case where the destination is only going straight and the destination is going straight and turning in the absence of obstacles for autonomous driving to the destination. When the destination was only going straight, it was possible to reach the destination quickly because there was little need for position correction. However, when the destination included a turn, the time to arrive at the destination was relatively delayed due to the need for position correction. As a result of the experiment, it was found that the delivery robot arrived at the destination relatively accurately, although a slight positional error occurred while driving, and the applicability of the QR code-based destination self-driving delivery robot was confirmed.

  • PDF

Gaze Detection System using Real-time Active Vision Camera (실시간 능동 비전 카메라를 이용한 시선 위치 추적 시스템)

  • 박강령
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1228-1238
    • /
    • 2003
  • This paper presents a new and practical method based on computer vision for detecting the monitor position where the user is looking. In general, the user tends to move both his face and eyes in order to gaze at certain monitor position. Previous researches use only one wide view camera, which can capture a whole user's face. In such a case, the image resolution is too low and the fine movements of user's eye cannot be exactly detected. So, we implement the gaze detection system with dual camera systems(a wide and a narrow view camera). In order to locate the user's eye position accurately, the narrow view camera has the functionalities of auto focusing and auto panning/tilting based on the detected 3D facial feature positions from the wide view camera. In addition, we use dual R-LED illuminators in order to detect facial features and especially eye features. As experimental results, we can implement the real-time gaze detection system and the gaze position accuracy between the computed positions and the real ones is about 3.44 cm of RMS error.