• Title/Summary/Keyword: 카나드 설계

Search Result 9, Processing Time 0.018 seconds

Canard-Leading Edge Flap Scheduling for the Maneuverability Enhancement of a Fighter Class Aircraft (전투기급 항공기 기동성 증대를 위한 카나드-앞전플랩 스케줄링)

  • Chung, In-Jae;Kim, Sang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.165-170
    • /
    • 2007
  • During the conceptual design phase of a wing-body-canard type fighter class aircraft, as a method of maneuverability enhancement for an aircraft, effects of canard-leading edge flap scheduling have been studied. In this study, corrected supersonic panel method has been used to predict the drag polar characteristics due to canard-leading edge flap deflections in the high speed regime. Utilizing the predicted drag polar curves, the canard-leading edge flap scheduling laws have been established. These scheduling laws are the relation of canard-leading edge flap deflections and the flight conditions to maximize the lift-drag ratio. Based on the results obtained from the canard-leading edge flap scheduling, the present method has shown to be useful to enhance the maneuverability of wing-body-canard type fighter class aircraft.

An Establishment of Canard-Leading Edge Flap Scheduling Law Based on Experimental and Numerical Studies For the Aerodynamic Design of Canard Type Fighter Class Aircraft (카나드 형상 전투기급 항공기 공력설계를 위한 실험 및 수치해석적 카나드-앞전플랩 스케줄링 법칙 수립)

  • Chung, In-Jae;Kim, Sang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.655-660
    • /
    • 2007
  • A canard-leading edge flap deflection scheduling laws have been established to enhance the maneuverability of the canard type fighter class aircraft. These scheduling laws are the relation of canard-leading edge flap deflections and flight conditions to maximize the lift-drag ratio. For these purposes, the corrected supersonic panel method has been used to predict the lift-drag characteristics due to canard-leading edge flap deflections. In addition, the high speed wind tunnel test has been conducted with 1/20 scale model to validate the predicted scheduling laws. Good agreements have been obtained compared with the results of high speed wind tunnel test. Based on the results obtained from the experimental and numerical studies, the corrected supersonic panel method has shown to be useful to establish the canard-leading edge flap deflection scheduling law for the aerodynamic design of canard type fighter class aircraft.

An Experimental Study on High Angle of Attack Static Stability Analysis For the Aerodynamic Design of Canard Type High Maneuver Aircraft (카나드 형상 고시동 항공기 공력설계를 우한 높은 받음각 정적 안정성 분석 실험 연구)

  • Chung, In-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.575-580
    • /
    • 2007
  • During the conceptual design phase of a canard type high maneuverable aircraft, the low speed small scale wind tunnel test was conducted to investigate the high angle-of-attack static stability of the aircraft. In this study, 1/50th scale generic canard-body-wing model was used for the small scale wind tunnel test. For the analysis of static stability including high angle-of-attack nonlinear characteristics, the vertical tail effects were studied due to canard deflections. In addition, the nose chine effects were studied at high angle-of-attack. Based on the results obtained from the experimental study, the configuration change effects for canard type aircraft on high angle-of-attack static stability have been able to analyze.

Dynamic Aeroelastic Characteristics of an All-Movable Canard with Oscillating Flap Used in UAV (플랩이 있는 무인기 전운동 카나드의 동적공탄성 특성)

  • Kim, Dong-Hyun;Koo, Kyo-Nam;Lee, In;Kim, Sung-Jun;Kim, Sung-Chan;Lee, Jung-Jin;Choi, Ik-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.56-63
    • /
    • 2004
  • In this study, dynamic aeroelastic analyses of the canard with oscillating flap are conducted considering the effect of aerodynamic compressibility. The canard model considered herein is an all-movable type with a pitching axis on a canard-rotor-wing aircraft which was considered as one of the major UAV candidates under developing in Korea. The equivalent structural model is constructed based on the initial design data by the Korea smart UAV development center. Both the frequency and the time-domain aeroelastic analyses have been applied to practically conduct parametric studies on the effects of equivalent torsional stiffness. In the case of all-movable control surface with oscillating flap, the equivalent rotational stiffness of the pitch axes are important design parameters. The parametric results for the aeroelastic instability are practically presented.

Aerodynamic Design of a Canard Controlled 2D Course Correction Fuze for Smart Munition (카나드 기반의 지능탄 조종 장치 공력설계)

  • Park, Ji-Hwan;Bae, Ju-Hyeon;Song, Min-Sup;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • Course correction munition is a smart projectile which improves its accuracy by the control mechanism equipped in the fuze section with canard. In this paper, various aerodynamic configurations of the fuze section were analysed by utilizing a semi-empirical method and a CFD method. A final canard configuration showing the least drag was then determined. During the CFD simulation, it was found that the k-${\omega}$ SST turbulence model combined with O-type grid base is suitable for the prediction of the base drag. Finally, the aerodynamic characteristics of the smart munition and the change of drag due to the canard installation were analysed.

Conformance-Based Dynamic Performance Optimization of an Actuator (순응도 기반의 구동기 동적 성능 최적화)

  • Son, Young-Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1327-1334
    • /
    • 2012
  • This study shows the conformance-based design results of a fourth-order dynamic actuator showing a performance variation caused by variation in the components as well as aero-induced disturbances. The actuator comprises a BLDC motor, spur gear and worm gear assembly, and canard. The actuator performance was evaluated by using time-variant angle information of the canard. Based on the response surface models, critical system variables were screened using F-tests, and then, the performance was approximated as a function of the variables because it is difficult to determine the performance of a high-order dynamic system as a function of system variables through analytical approaches. In this study, the conformance of uncertain performance to the specification was defined as a probability measure. The design variables obtained by optimizing the measure can provide actuator performance conforming to the specifications considered, even though there is a variation in both the components and the aero-induced disturbances.

Development of an Electromechanical Actuator Interlocked with Canard for a Rapid Maneuvering Side Thruster's Valve (고기동 추력기 밸브 구동용 날개연동형 전기식 구동기 개발)

  • Seo, Min-Ho;Hur, Don;Kim, Eun-Soo;Park, Sang-Joon;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.375-378
    • /
    • 2011
  • A valve's high response for controlling thruster is essential for rapid turning during initial short moment after launching. The actuator for controlling the valve is simultaneously used in controlling canard of a guided missile. This paper explain development process for the electromechanical actuator interlocked with canard by arranging in following order, design, analysis, manufacture, test and evaluation.

  • PDF

Canard Rotor/Wing 비행체 추진시스템의 회전익 및 천이모드 성능

  • Lee, Chang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.50-55
    • /
    • 2004
  • Performance predictions of the propulsion system were conducted for a 900㎏ class Canard Rotor/Wing vehicle. The main components of the propulsion system are turbojet engine, exhaust ducts and nozzles. The internal flow of the duct was considered as one-dimensional, compressible and viscous flow. Adequate governing equations including centrifugal force effect were applied to the analysis of the duct flows. Results such as available power, available thrust, engine throttle, mass flow rates, rotor RPM and cruise nozzle area were presented for rotary-wing mode and transition mode.

  • PDF

Design and Optimization Study on the Multi Flight Modes Canard Rotor/Wing Aircraft with Development of Sizing Program (사이징 프로그램 개발을 통한 다중 비행 모드 Canard Rotor/Wing 항공기의 형상 최적설계)

  • Kim, Jong-Hwan;Kim, Min-Ji;Lee, Jae-Woo;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.22-31
    • /
    • 2005
  • A design study was conducted for a new concept aircraft(Canard Rotor/Wing: CRW) that has the capability of dual mode flight, a rotorcraft and a fixed wing mode. The CRW can show a vertical take off/landing and a high speed/efficiency cruise performance simultaneously. It is not surprising to develop a new sizing code for this class of aircraft because conventional sizing codes developed solely for either the rotary wing or the fixed wing aircraft are not adequate to design a dual mode aircraft operated both by the rotary wing through tip jet effux and the fixed wing lift. Thus, a new design code was developed based on the conventional sizing code by adding some features including rotor performance, duct flow, and engine flow analysis, hence could eventually predict the performance of reaction driven rotor, the flight performance and the flight characteristics. The various design parameters were investigated to find their influences on the flight performance then, a small UAV(Unmanned Aircraft Vehicle) of 1500 lbs class was optimally designed to have minimum weight using the developed sizing code.