• Title/Summary/Keyword: 침하 깊이

Search Result 133, Processing Time 0.029 seconds

Development of Feasible Dynamic Stability in Wheel Tracking Test for Asphalt Concrete Mixtures (아스팔트 혼합물 반복주행 시험에서 합리적 동적안정도의 산정 방법)

  • Kim Kwang-Woo;Doh Young-Soo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.77-87
    • /
    • 2006
  • Dynamic stability (DS) in the wheel tracking (WT) test is used as a basic index of rut-resistance for asphalt mixtures. In general, the deeper rut depth is obtained from the weaker mixture, resulting in the lower DS value. On the other hand, the shallower rut depth is obtained from the stronger mixture, resulting in the higher DS. However, it is not always the case when the DS is calculated by the existing method because the DS is simply determined based on the slope at the final stage of the rut depth-cycle curve. Specifically, in the case of the depth-cycle curve showing a steeper slope in the early part but flatter slope in last part, the DS is calculated to be higher than the curve showing a ever-increasing slope throughout the test. As long as the last part of slope is flatter, the deeper final rut depth is evaluated to show a higher DS than the little final rut depth. Therefore, a reasonable method for DS evaluation need to be established. Several new methods were suggested by considering the early, middle and final parts of rut depth to determine a reasonable DS. The results have shown that those new methods have demonstrated a significant improvement in distinguishing similarly performing mixtures. The result also showed that $DS_2$ had better correlation with SD than any other methods , representing the rutting resistance of asphalt mixture very well. The new DS calculation method is relatively simple and easy to follow. More validatin study is required for practical application.

  • PDF

Centriofuge Model Tests on Excavation Depth-Time-Displacement of Unpropped Diaphragm Walls (Diaphragm Wall에서 굴착깊이-시간-변위에 관한 원심모형실험)

  • Lee, Cheo-Keun;Aan, Kwang-Kuk;Heo, Yol
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.179-191
    • /
    • 2000
  • 본 연구에서는 화강토 지반상의 자립식 diaphragm wall의 거동을 연구하기 위하여 벽체의 근입깊이비, 지하수위 및 굴착조건(연속 및 단계굴착)을 변화시키면서 원심모형시럼을 수행하였다. 원심모형실험시 지반굴착은 흙과 동일한 밀도로 혼합된 zine chloride 용액이 배수되도록 밸브를 조작하여 실시하였으며, 굴착에 의해 발생되는 지반의 변형괴 벽체의 변위 및 휨모멘트를 시간경과에 따라 측정하였다. 실험결과, 벽체의 근입깊이비가 증가함에 따라 벽체의 휨모멘트는 증가하는 반면, 굴착과정동안 배면측에서의 간극수압 감소속도는 감소하였다. 최종 굴착단계에서 굴착후 시간경과에 따른 침하량은 굴착과정중의 침하?에 비해 5~7% 정도를 나타내었다. 최대표면침하량과 벽체변위를 굴착깊이로 정규화한 결과 최대 침하량은 벽체 변위량의 0.8~1.2배9평균0.91배)사이에 분포하였다. 굴착깊이로 전규화한 벽체변위와 근입깊이와의 관계는 지수함수식으로 제안하였다. 파괴면은 직선적인 형태로 파괴면내의 배면측 지반은 벽체를 향하여 하향의 변위를 일으키면서 벽체의 회전에 의해 파괴되었으며, 퐈괴면의 각도는 66~72.5$^{\circ}$정도로 이론적인 파괴면의 각도보다 크게 평가되었다.

  • PDF

A Comparative Analysis of the Evaluation Methods for Ground Subsidence in Korea (국내 함몰형 지반침하 평가방법의 비교 분석)

  • Hyun-Bae Park;Seong-Woo Moon;Sejeong Ju;Jeungeum Lee;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.381-401
    • /
    • 2024
  • To predict the ground subsidence caused by mines, various evaluation methods were applied to cases of ground subsidence in Korea, and the results were compared and analyzed. Continuous subsidence, which is relatively easily and accurately predicted, was excluded in this analysis. The stress arch - volumetric expansion method, limit equilibrium method, numerical analysis, probabilistic method, and evaluation method of the Korea Mine Rehabilitation and Mineral Resources Corporation (KO MIR) were applied to 36 subsidence cases, including subsidence location, width, and depth, and goaf width, depth, and incline data. The stress arch - volumetric expansion method was the most accurate with an accuracy of ~92%. In the case of the KOMIR method, the regression model is 86.1% accurate, but somewhat lower in accuracy using a triangular pyramidal volume. The stress arch - volumetric expansion and KOMIR methods have the disadvantage of evaluating whether subsidence occurs or not. In the case of the numerical analysis, the accuracy is 72.3% when estimating the subsidence depth, but is slightly lower (55.8%) when estimating the subsidence width. The probabilistic and limit equilibrium methods have similar accuracies of 50.8~63.7%. Given it is possible to determine whether subsidence occurs, and the subsidence location, width, and depth with each method, it is recommended to apply various methods when evaluating sinkhole-type subsidence.

Design of Rigid Sewer Pipe by Bearing Capacity and Settlement (지지력과 침하량을 고려한 강성관용 하수관거 설계)

  • Kim, Seong-Kyum;Oh, Seung-Sik;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.137-143
    • /
    • 2020
  • This study proposes an improvement plan for the evaluation of the bearing capacity and settlement of sewer pipe bases for the improvement of design methods for determining pipe breakage. Under the same conditions, the safety of crushed stone foundation was the lowest. Concrete VR pipe and prefabricated plastic foundations were found to be safe at most excavation depths. The bearing capacity of a rigid pipe foundation was determined by the shape of the foundation, soil conditions, and groundwater, irrespective of the type of foundation. As the depth of the excavation increases, the settlement tends to decrease immediately, and as the diameter of the pipe increases, the settlement tends to increase immediately at the same depth. It is thus reasonable to consider the bearing capacity and the instant settlement amount to solve the problems caused by the settlement of a rigid sewer pipe.

Analysis of Land Subsidence and Microwave Penetration on Drying Mudflat by using a Polarimetric Scatterometer Experiment (다편광 산란계 실험을 통한 개펄 건조시의 지반 침하와 마이크로파 침투 분석)

  • Lee Hoon-Yol;Chae Hee-Sam;Cho Seong-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.145-148
    • /
    • 2006
  • 새로 조성된 간척지 갯벌이 건조 수축하면 지반 침하와 더불어 토양 내로의 마이크로파의 침투 깊이가 증가한다 따라서 인공위성 DInSAR를 이용하여 지반 침하량을 구하고자 할 때, 건조 시 동시에 발생하는 마이크로파의 개펄 침투 현상을 규명하여 보정해 주어야 한다. 이를 위하여 다편광 산란계(Polarimetric Scatterometer)를 구성하여 건조 개펄에 대한 실내실험을 실시하였다. PolScat의 구성은 5.0-5.6GHz 대역의 dual-polarization square horn antenna를 사용하였으며 Agilent 8753ES 벡터 네트워크 분석기를 사용하였다. 길이 2m, 폭 2m, 높이 20cm의 개펄 샘플을 약 6주 동안 실내에서 건조시켜 위상을 측정한 결과 지반 침하와 함께 약 4mm의 마이크로파 투과현상이 발견되었다. 따라서 인공위성 DInSAR 지반침하량 계산에 있어서 반드시 토양 수분에 따른 마이크로파의 토양 침투 깊이를 보정해 주어야 함이 밝혀졌다.

  • PDF

Consolidation Settlement in One-Dimensional Condition Considering the Variation of Initial Effective Stresses with Depth (깊이 별 초기유효응력 차이를 고려한 1차원 압밀침하량 산정공식)

  • Yune, Chan-Young;Kim, Ju-Hyong;Oh, Myoung-Hak;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.273-282
    • /
    • 2008
  • A series of analytical formula to compute settlements accounting for possible variations of initial effective stresses were derived. The comparison of computed values from conventional and newly-derived equations shows that computed settlements via the conventional equation unrealistically vary with the chosen number of layers in a clay stratum and also are 45~100% less than the value obtained from the newly-derived equation with exact mathematical integration.

Numerical analysis of tunnelling-induced ground movements (터널굴착으로 발생한 지반거동에 대한 수치해석적 분석)

  • Son, Moo-Rak;Yun, Jong-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.229-242
    • /
    • 2009
  • Numerical analysis has been performed to estimate maximum settlement, maximum horizontal displacement and total settlement volume at the ground surface due to tunnel excavation varying ground condition, tunnel depth and diameter, and construction condition (volume loss at excavation face). The maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering ground condition, tunnel depth and diameter, and construction condition, and it has been also compared with the maximum horizontal displacement. In addition, the volume loss ($V_L$) at tunnel excavation face has been compared with the total surface settlement volume ($V_s$) with the variation of ground condition, tunnel depth, and tunnel diameter. The results from the numerical analysis have been compared with field measurements to confirm the applicability and validity of the results and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the ground movements due to tunnel excavation.

Investigation on Differential Settlement Characteristics of the Final Landfill Cover Used SRSL (부등침하 발생 시 SRSL이 적용된 매립지 최종복토층의 침하 특성 검토)

  • Kwon, Oh-Jung;Oh, Myoung-Hak;Cho, Wan-Jei;Park, Jun-Boum
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.9-17
    • /
    • 2009
  • This research was intended to verify the stability of landfill final cover using SRSL(Self Recovering Sustainable Liner) with regard to differential settlements due to the degradation of waste and so on in a waste landfill. Numerical analysis was performed using FLAC 2D software program with input parameters based on soil characteristic tests and reference data after the blank was designed in order to represent the decomposition condition of waste. The maximum settlement of landfill cover was calculated to investigate the structural stability of landfill cover with the different condition of settlement width, settlement depth, and number of differential settlements. The allowable maximum deformation rate of SRSL, which was calculated using field permeability tests, was 6 mm. The analysis showed that SRSL was stable in case of a differential settlement width not exceeding 24.5% of total cover width.

  • PDF

A Model Test on the Settlements of Adjacent Structures by Excavation (모형실험을 통한 굴착시 인접 구조물의 침하량 평가)

  • 석정우;최광철;김운영;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.17-27
    • /
    • 1999
  • It comes to be an important point to judge precisely the effects of excavation on adjacent ground and structures. It is incorrect to evaluate the ground settlement by excavation without considering the adjacent structure. In this study, laboratory scale tests were carried out by varying the position of structure under the condition of different system stiffness and wall friction to evaluate the behavior of adjacent structures and ground by excavation. When the distance between the structures and the wall was less than 0.3 times of the excavation depth, the ground settlement increased by 181%. No additional effect was observed when the distance was more than 1.0H. As the embedded depth was deeper, the influence zone was smaller, and few additional settlements and angular displacement were observed when the embedded depth was more than 0.75H.

  • PDF

Design of Pile Foundations Considering Negative Skin Friction (부마찰력을 고려한 말뚝기초 설계)

  • Kim Ju-Hyong;Kwon Oh-Sung;Kim Myoug-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.65-74
    • /
    • 2005
  • The negative skin friction on piles, which are installed in currently consolidating soft deposits, creates significant problems on the stability of pile foundations. This study investigated whether or not the pile foundation designs were appropriate in soft deposits with large amount of consolidation settlement. The final settlements of the grounds along the pile depth were estimated by the soil parameters obtained from the laboratory tests and by the field-measured settlement curves, if they were available. The displacement of the piles along the pile depth was estimated by both the load transfer method and the numerical method. Both methods gave similar locations of neutral planes and magnitudes of the maximum axial forces on the piles. The movements of the ground and the piles were compared to calculate the down drag acting on piles. For the piles whose bearing capacities were less than the design loads including the down drag, slip layer coatings and/or incrementing of the pile penetration depth into the bearing stratum were proposed to improve the pile capacities.