• Title/Summary/Keyword: 침하해석

Search Result 740, Processing Time 0.026 seconds

A Study on Back Analysis Settlement Prediction of Soft Ground Using Numerical Analysis and Measurement Data (수치해석과 계측데이터를 이용한 연약지반의 역해석 침하 예측에 관한 연구)

  • Sangju Jeon;Hyeok Seo;Daehyeon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.9-17
    • /
    • 2024
  • When constructing on soft ground, managing ground settlement and safety is crucial. However, there often exists a significant disparity between the actual behavior of the ground and the design plans. In this study, we aimed to compare and analyze the difference between the predicted settlement based on theoretical formulas and the measured settlement during construction, in order to predict settlement. For this purpose, we analyzed settlement data from 18 construction sites. The results indicated that the back analysis settlement values were similar to the measured settlement values, whereas the design settlement values were significantly higher compared to the measured settlement values. Specifically, the design settlement values were 1.2 to 1.4 times higher than those derived from back analysis using measured values. The RMSE analysis revealed a value of 0.6212m for the design settlement and 0.1697m for the back analysis settlement. The difference between the back analysis settlement and the measured settlement was more than 70% lower than the difference between the design settlement and the measured settlement. This indicates that the back analysis settlement values exhibit lower error rates compared to the design settlement values.

Analysis of Ground Subsidence according to Tunnel Passage in Geological Vulnerable Zone (지질취약구간 터널통과에 따른 지반침하량 분석)

  • Choi, Jung-Youl;Yang, Gyu-Nam;Kim, Tae-Jun;Chung, Jee Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.393-399
    • /
    • 2020
  • In this study, the subsidence behavior caused by groundwater ex-flow in a limestone cavity encountered during tunnel excavation was quantified based on numerical analysis and the effect was analyzed. Based on the groundwater level and surface subsidence surveyed at the site, a numerical analysis technique was applied to analyze the characteristics of the subsidence behavior according to the tunnel passage of the geological vulnerabilities. The results of groundwater seepage-coupled analysis were analyzed to reflect the actual ground subsidence behavior. As a result of the study, it was analyzed that the ground subsidence due to the tunnel excavation in the limestone common section(the geological vulnerable zone) was analyzed that the dramatical decrease in groundwater level was the main cause. As a result of numerical analysis, it was analyzed that the long-term cumulative settlement of the asphalt surface after the groundwater ex-flow was 76~118mm due to the reduction of the volume of the soil layer due to the decrease in the groundwater level, and the settlement amount increased as the depth of the soil layer increased.

Probabilistic Analysis of Shallow Foundation Settlements (얕은기호 침하의 확률론적 해석)

  • 정두영;오병현
    • Geotechnical Engineering
    • /
    • v.9 no.3
    • /
    • pp.77-90
    • /
    • 1993
  • In the settlement analysis of shallow foundation soil properties, loads and soil strata involve many uncertainties so it is necessary to do analysis of settlement that considers the probabilistic properties of each variable. This study is performed to probabilistic analysis for settlement of shallow foundation consisted of individual footings by using Monte Carlo Method. To consider the uncertainty of variables, both the soil properties and loads are assumed to be normal distribution random variables and get settlement mean and coefficient of variation of individual footing. And the settlement of each individual footing is also assumed to be normal distribution. Settlement of each individual footing which considers the probability of soft soil pockets in soil strata follows Markov process. Then it is performed to do sensitivity analysis which is involved to excess probability of allowable criteria of maxi mum settlement and differential settlement according to varity of each variable. It is thought to be proper that the settlement analysis of shallow foundation should be analyzed considering uncertainty of variables and soil stratum conditions.

  • PDF

Behavior of Soft Ground Improved by Weight of Embankment (단계 성토 하중에 의한 개량된 연약지반의 거동 분석)

  • Jeon, Nam-Soo;Pak, Young;Im, Hui-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1190-1193
    • /
    • 2010
  • 본 연구에서는 점토층의 자중압밀을 시행하여 현장강도를 구현하기 위하여 1/70로 축소 모델링하여 원심모형실험을 수행하였으며, 점토구간에 PBD 타설시의 연약지반의 압밀침하거동을 분석하기 위하여서는 1/100로 축소모델링하여 원심모형실험과 전산해석을 실시하였다. 전산해석결과 성토체중심아래의 점토지반의 침하량은 1단계 성토제방하중 하에서 4.8개월 경과 후 최대 침하량은 41.1cm, 2단계 성토하중에서 4.2개월 경과 후의 최대침하량은 78.8, 3단계 성토하중에서 6개월 경과후의 침하량은 93.5cm의 침하가 발생하는 것으로 나타나 수치해석 결과와 원심모형실험결과 값의 유사한 경향을 확인하였다.

  • PDF

Determination of Plastic Settlement of Mortar Using Non-contact Laser Measurement Device (레이저 거리측정 실험을 통한 모르타르의 소성침하량 산정)

  • Kwak, Hyo-Gyoung;Ha, Soojun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.549-564
    • /
    • 2008
  • In this paper, the plastic settlement of mortar is analyzed on the basis of the small strain consolidation theory, and the validity of the approach is verified through the comparison with experimental data. First, the amount of settlement caused by self-weight of bulk mortar is measured using a non-contact laser measurement device and the estimation of material parameters related to the settlement of mortar is followed. In advance, another experiment is also performed on mortar with embedded reinforcement to measure the settlement distribution, and the influence of mixture proportions and cover depth on unequal settlement is analyzed. Finally, correlation studies between experimental data and settlement distribution obtained by consolidation analysis represents that the application of consolidation theory to the analysis of plastic settlement of mortar is reasonable.

Newly Developed Settlement Prediction Method on Soft Soils with Subsequent Surcharge Change (성토고 변화를 고려한 새로운 연약 지반 침하 예측 기법)

  • Chun, Sung-Ho;Kim, Han-Saem;Yune, Chan-Young;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5C
    • /
    • pp.155-162
    • /
    • 2011
  • Settlement prediction based on field monitored data, which is used to control subsequent surcharges, is very important in construction management for soft ground improvement with the preloading method. Observational settlement prediction methods, which are suggested for an instantaneous loading, have been widely used in fields. However, they have difficulties in the settlement prediction with subsequent surcharge change. In this paper, a simple method to predict the settlement with subsequent surcharge change is suggested. The suggested method adopts assumptions to simplify the complex field condition and utilizes observational methods. The suggested method is applied to a large consolidation test result, FDM analysis results, and field monitored settlement data to confirm its practicability. From the applications, the suggested method produces reasonable prediction results with various subsequent surcharge changes.

Numerical simulation for surface settlement considering face vibration of TBM tunnelling in mixed-face condition (복합지반에서 TBM 굴진 진동을 고려한 지표침하에 대한 수치모델링)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.333-339
    • /
    • 2015
  • In this paper, the surface settlement resulted from the shallow TBM tunnelling has been numerically simulated. TBM tunnelling is especially used in urban area to avoid serious vibration and noise caused by explosion in NATM. Surface settlement is one of the most important problems encountered in all tunnelling and critical in urban areas. In this study, face vibration of TBM excavation is considered to estimate surface settlement trend according to TBM extrusion. The dynamic excavation forces are calculated by total torque on the TBM cutterhead in mixed-face of soil and weathered rock condition with shallow depth. A 3-dimensional FDM code is employed to simulate TBM tunnelling and mechanical-dynamic coupling analysis is performed. The 3D numerical analysis results showed that dynamic settlement histories and trend of surface settlement successfully. The maximum settlement occurred at the excavation point located at 2.5D behind the face, and the effect of face vibration on the surface settlement was verified in this study.

Construction Stage Analysis of Structure Settlement Using Underpinning (언더피닝 공법을 이용한 구조물 침하에 대한 시공 단계 해석)

  • Lee, Jonghyop;Heo, Seungjin;Ok, Suyeol;Lim, Yunmook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.131-138
    • /
    • 2012
  • This paper aims to present accurately analytical modeling method for underpinning using uncertainty reduction, obtained from comparison between numerical analysis and Site measuring data during construction and service stages. Combination of various conditions should be considered for using numerical analysis to predict the behavior of the structure accurately, even though complexly considered the conditions, real construction should be secured the stability by applying the actual instrument measurement data because predicted results are including the considerable uncertainty. In order to secure the stability during construction, the real time instrument measurements together with numerical analysis results performed before construction state are complementary used actively. From the results of this study, the significant settlements are occurred not only in underpass structure of adjacent excavation area but also in the permanent steel pipe structures were analyzed. From the site measurement results of underpass settlement, the settlements are occurred in every stages of excavation, furthermore observed tendency is asymmetrical excavation patterns are settled more than symmetrical excavation patterns. The essential consideration points for numerical analysis are construction sequence, the direction of the existing facilities, the methods of elements modeling, the applied factors for nature of material and different results would be occurred depending upon inputting the above factors.

A development of the ground settlement evaluation chart on tunnel excavation (터널굴착에 따른 지반침하 예측을 위한 침하량 평가도표 개발)

  • Park, Chi Myeon;You, Kwang-Ho;Lee, Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1105-1123
    • /
    • 2018
  • The main risk factors of tunnel excavation through urban areas are ground settlement and surface sink which caused by ground conditions, excavation method, groundwater condition, excavation length, support method, etc. In the process of ground settlement assessment, the numerical analysis should be conducted considering the displacement and stress due to tunnel excavation. Therefore a technique that can simplify such process and easily evaluate the influence of tunnel excavation is needed. This study focused on the tunnelling-induced ground settlement which is main consideration of underground safety impact assessment. The parametric numerical analyses were performed considering such parameters as ground conditions, tunnel depth, and lateral distance from tunnel center line, etc. A simplified ground settlement evaluation chart was suggested by analyzing tendency of ground subsidence, lateral influence area and character by depth. The applicability of the suggested settlement evaluation chart was verified by comparative numerical analysis of settlement characteristics.

A study on ground surface settlement due to groundwater drawdown during tunnelling (터널 굴착시 지하수 저하로 인한 지반침하에 관한 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.361-375
    • /
    • 2007
  • This paper presents the results of investigation on tunnelling-induced ground surface settlement characteristics in water bearing ground using finite element (FE) stress-pore pressure coupled analysis. Fundamental interaction mechanism of ground and groundwater lowering was first examined and a number of influencing factors on the results of the coupled FE analysis were identified. A parametric study was then conducted on the influencing factors such as rock type, thickness of soil layer, permeability of shotcrete lining, among others. The results indicate that the tunneling-induced groundwater drawdown results in a deeper and wider settlement trough than without groundwater drawdown, and that the Error function approach does not yield satisfactory result in predicting a settlement profile. The results of analysis are summarized so that the relationship between the settlement and the influencing factors can be identified.

  • PDF