• Title/Summary/Keyword: 침하량 거동

Search Result 304, Processing Time 0.026 seconds

Model Tests on Ground Deformation during Trench Excavation for Diaphragm Walls (지중연속벽 시공을 위한 트렌치 굴착시 지반변형에 관한 모형실험)

  • Hong, Won-Pyo;Lee, Moon-Ku;Lee, Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.77-88
    • /
    • 2006
  • A series of model tests were performed to investigate the ground deformation during trench excavation for diaphragm walls. An apparatus was manufactured to observe the failure pattern of a slurry-supported trench in sandy ground. Ground deformations including settlement and lateral displacement of the surrounding ground adjacent to the trench were carefully monitored during excavation. Experimental observations indicated that the settlement of the adjacent ground increased with closing to the trench. Especially, the considerable settlement occurred at the distance which was equal to 40% of the excavation depth. And, the higher settlement was obtained when the relative density of ground was looser and the ground water table was higher. Also, the lateral wall face of excavated trench was bulged with lowering the slurry level In stages and then the upper part of trench failed finally. The envelope of ground surface settlement could be represented as a hyperbolic line and the measured settlement was smaller than those predicted by Clough and O'Rourke (1990).

A Study on the Prediction of Settlement for Granular Piled Raft System (조립토 Piled Raft 시스템의 침하량 예측에 관한 연구)

  • Shin, Bang-Woong;Chae, Hyun-Sik;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.51-56
    • /
    • 2000
  • Granular piled raft systems have been effectively used in soft ground foundation not only to reduce settlements but also to improve bearing capacity. In the present study, the finite element method of analysis on a basis of the plate theory is proposed to predict non-uniform settlements at the interface between the raft and foundation soils. To verify the validity of the proposed method of analysis and the predicted settlements of granular piled raft systems, comparisons are made with the results presented in the previous research(Kim et al., 1999). Finally, behavior characteristics with various patterns of the granular piled raft systems and effects of the settlement reduction are analyzed in connection with the design parameters.

  • PDF

Construction Stage Analysis of Structure Settlement Using Underpinning (언더피닝 공법을 이용한 구조물 침하에 대한 시공 단계 해석)

  • Lee, Jonghyop;Heo, Seungjin;Ok, Suyeol;Lim, Yunmook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.131-138
    • /
    • 2012
  • This paper aims to present accurately analytical modeling method for underpinning using uncertainty reduction, obtained from comparison between numerical analysis and Site measuring data during construction and service stages. Combination of various conditions should be considered for using numerical analysis to predict the behavior of the structure accurately, even though complexly considered the conditions, real construction should be secured the stability by applying the actual instrument measurement data because predicted results are including the considerable uncertainty. In order to secure the stability during construction, the real time instrument measurements together with numerical analysis results performed before construction state are complementary used actively. From the results of this study, the significant settlements are occurred not only in underpass structure of adjacent excavation area but also in the permanent steel pipe structures were analyzed. From the site measurement results of underpass settlement, the settlements are occurred in every stages of excavation, furthermore observed tendency is asymmetrical excavation patterns are settled more than symmetrical excavation patterns. The essential consideration points for numerical analysis are construction sequence, the direction of the existing facilities, the methods of elements modeling, the applied factors for nature of material and different results would be occurred depending upon inputting the above factors.

Estimation of the Roadbed Settlement and Bearing Capacity According to Radius of Curve and Cant in Railroad (철도의 곡선반경 및 캔트에 따른 노반의 침하 및 지지력 산정)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.29-38
    • /
    • 2007
  • The research on the track performance and stability of the tilting-train was performed and the settlement of the roadbed was estimated as the tilting train was being operated on the rail joint under the allowable velocity subjected to the track performance and the stability of the tilting-train. Since the impact on the continuous welded rail (CWR) induced by the tilting-train loading is different from the impact on the rail joint, it needs to investigate the settlement of the roadbed beneath the CWR. In this study, when the tilting-train is being operated on the CWR under the allowable velocity subjected to the track performance and the stability of the tilting-train, the settlement and bearing capacity of the roadbed beneath the CWR have been evaluated using numerical analysis and compared with those beneath the rail joint. The numerical results show that the settlements of the roadbed beneath CWR and rail joint are amount to 71.2% and 88.8% of the allowable settlement, respectively. And the stresses are amount to 10.4% and 12.1% of the allowable bearing capacity, respectively.

Long-Term Settlement Behavior of Refuse Landfills with Different Fill Ages (매립 연한이 서로 다른 쓰레기 매립지의 장기 침하 거동)

  • Park, Hyeon-Il;Lee, Seung-Rae;Go, Gwang-Hun
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.21-30
    • /
    • 1998
  • The settlement characteristics of refuse landfills are peculiar because considerable amount of settlement occurs due to the decomposition of refuse organic solids for very long period. The total amount of compression that occurs due to the decomposition in refuse landfill is mainly dependent on the amount of biodegradable refuse solids and fill Ige of the refuse landfill, and the settlement stabilization speed is dependent on the decomposition condition. In order to figure out the settlement characteristics of refuse landfills. a proposed mathematical model is applied to settlement data of refuse landfills with different fill ages. A data bank of model parameters was obtained and the trends were analyzed. The long-term settlement behavior of refuse landfills can be estimated fairly well by the proposed model. The total remaining amount of settlement may be predicted on the basis of the fill age and appropriate two design parameters.

  • PDF

A Consideration on Deformation Characteristics of Normally-Consolidated Clays by Various Stress Paths (다양한 응력경로에 따른 정규압밀 점성토의 변형특성 고찰)

  • 김창엽;정충기
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.161-173
    • /
    • 1999
  • Settlement analysis based on oedometer test results with or without Skempton-Bjerrum's modification method ( widely used for practical purposes when estimating consolidation settlements of soft clay deposits) has shortcomings that it cannot simulate real stress states and deformation behaviors of soils in case that in-situ loading and deformation conditions are not 1-dimensional. In this study, the stress path method, reflecting various probable stress paths, was employed to normally - consolidated kaolinite samples by using automated triaxial testing device which can control stress paths automatically. From this experimental study, elastic, consolidation, secondary compression and pore pressure development - dissipation behaviors under various stress paths were analyzed and deformation characteristics of soft clays, which can be the basis of rational estimation of settlements, were studied. Also by comparing results of stress path tests with those of 1-dimensional consolidation tests, limitations and problems of conventional methods were clarified.

  • PDF

A Practical Approach of Stress Path Method for Rational Settlement Estimation of Saturated Clay Deposit : Part II (Settlement Estimation Procedure and Application Examples) (포화 점성토지반 침하량의 합리적 평가를 위한 실용적인 응력경로법 적용방법 : Part II (침하량 평가절차와 적용예제))

  • Kim Chang-Youb;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.99-114
    • /
    • 2005
  • In Part I of this paper, a conceptual approach of the stress path method was newly proposed for a rational estimation of settlements of saturated clay deposits. A detailed procedure for effective evaluation and use of settlement-related characteristic deformation behaviors was developed in order to provide practicality to the new approach. In this Part II, on the basis of the results of Part 1, the concept of the new approach was embodied in the form of a detailed settlement estimation procedure. The applicability and usefulness of the new procedure were strongly supported by various application examples. In addition, possible errors of other conventional settlement estimation methods were investigated by comparing with the new procedure. Because of its flexible applicability for wide range of field conditions, the new procedure will have great usefulness in the practical side. For example, a reasonable foundation design based on allowable settlement criteria can be easily performed and modification of design factors can be readily reflected even during the subsequent construction stage. Especially, the new procedure will be of great use for preliminary work in a large scale construction site where various structures are planned to be constructed on a nearly identical ground condition.

Behavior Analysis of Approach Slabs of IPM Bridges according to Unsupported Length and Settlement (토압분리형 교량 접속슬래브의 비지지길이와 지반 침하에 따른 거동 해석)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.650-660
    • /
    • 2018
  • The approach slab plays an important role in the driving comfort of the connection section on a bridge. On the other hand, the approach slab only calculates the section force of a simple beam, and does not analyze the behavior. In this study, the unsupported length and settlement of approach slabs of IPM Bridges were examined using structural analysis. First, the section force was calculated by designing a simple beam, according to the length of the approach slab. The structural analysis was conducted to examine the behavior of the unsupported length and settlement. As the result, the bending moment decreased when the unsupported length was increased, and the bending moment increased when the settlement was increased. In addition, the design section force was estimated to be larger than the force of structural analysis, and the design of the approach slab according to the design guideline showed no problem in stability. Nevertheless, the vertical displacement exceeded the maintenance criterion of a 1/200 curve when the settlement exceeded 10 mm regardless of the unsupported length. Therefore, excessive settlement occurs in the reinforced earth retaining wall supporting the approach slab, and the design bending moment may be exceeded. Therefore, strict management is required.

매립지 원지반 침하량 역산에 의한 기초 압축 특성 연구

  • 김용인;현근일;박정용;장연수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.399-403
    • /
    • 2003
  • 해안의 연약지반에 건설되는 폐기물 매립지는 매립지의 안정성 평가를 위하여 하부기초지반의 침하거동 특성에 대한 분석이 필요하다. 본 연구에서는 현장 침하계측자료를 이용하여 현장 간극비와 현장 압축지수를 역산하여 그 특성을 분석하였다. 그 결과 매립초기에는 상부하중에 의한 유효응력증가가 미소하여 하부기초지반은 과압밀 특성을 나타내고 현장 압축지수 변화가 미소하였으나, 매립이 진행될수록 상부하중이 선행압밀하중을 초과하여 정규압밀영역으로 변화함에 따라 큰 폭의 증가를 보였다.

  • PDF

Influence of Saturation and Soil Density on the Ground Subsidence Using Distinct Element Method (개별요소법을 통한 지반의 포화도와 밀도가 함몰에 미치는 영향 평가)

  • Kim, Yeonho;Kim, Hyunbin;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.27-36
    • /
    • 2018
  • The collapse behavior of ground subsidence caused by continuous loss of particles depends on the saturated condition and density of the ground. In this study, types of ground subsidence were classified based on the saturated condition and each type was performed on the different relative density to analyze the influence factors on the collapse behavior by distinct element method. According to analysis results, the relatively small amount of settlement occurred on the dense ground and a cavity was created under dense-unsaturated ground. In contrast, loose ground showed the large amount of settlement and collapsed immediately without cavity formation even if the unsaturated ground was simulated. The results demonstrated that because the relative density has influence on the mechanical interlocking and saturated condition has influence on the inter-particle force, these are important factors to change the collapse behavior.