• Title/Summary/Keyword: 침투저항성

Search Result 290, Processing Time 0.025 seconds

Assessment of Recovery of Chloride Penetration Resistance of Self-healing Cement Mortars Containing Layered Double Hydroxide (이중층수산화물을 혼입한 자기치유 시멘트 모르타르의 염화물 침투 저항성 회복 평가)

  • Kyung Suk, Yoo;Seung Yup, Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.600-608
    • /
    • 2022
  • This study investigates the effect of layered double hydroxide (LDH) on the healing performance of self-healing concrete by assessing the chloride penetration resistance of self-healing cement mortars using electrical chloride ion migration-diffusion test. Test results show that both mortars containing healing materials only and mortars containing healing materials and Ca-Al LDH together mostly had higher migration-diffusion coefficients right after cracking, but the migration-diffusion coefficients decreased more than that of OPC with increasing healing ages, and thus, they yielded higher healing capacities than OPC. Also, mortars containing Ca-Al LDH together with healing materials showed higher reduction of their migration-diffusion coefficients, and thus, higher healing capacities than mortars containing healing materials only. This suggests that as the self-healing product increases on the crack surface, the binding of chloride ions by LDH inside the crack increases.

Fresh Water Injection Test to Mitigate Seawater Intrusion and Geophysical Monitoring in Coastal Area (해수침투 저감을 위한 담수주입시험 및 지구물리 모니터링)

  • Park, Kwon-Gyu;Shin, Je-Hyun;Hwang, Se-Ho;Park, In-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.353-360
    • /
    • 2007
  • We practiced fresh water injection test to identify its applibility as a method of seawater intrusion mitigation technique, and monitored the change of borehole fluid conductivity and the behavior of injected fresh water using borehole multichannel electrical conductivity monitoring and well-logging, and DC resistivity and SP monitoring at the surface. Well-logging and multichannel EC monitoring showed the decrease of fluid conductivity due to fresh water injection. We note that such an injection effect lasts more than several month which means the applibility of fresh water injection as a seawater intrusion control technique. Although SP monitoring did not show meaningful results because of weather condition during monitoring and the defects of electrodes due to long operation time, DC resistivity monitoring showed its effectiveness and applicability as a monitoring and assessment techniques of injection test by means of imaging the behavior and the front of fresh water body in terms of the increase of resistivity with reasonable resolution. In conclusion, we note that geophysical techniques can be an effective method of monitoring and evaluation of fresh water injection test, and expect that fresh water injection may be an practical method for the mitigation of seawater intrusion when applied with optimal design of injection well distribution and injection rate based on geophysical evaluation.

Geophysical well logs in basaltic area, Jeju Island (제주 현무암 지역의 용암분출에 따른 물리검층 반응의 특성 고찰)

  • Hwang Seho;Shim Jehyun;Park Inhwa;Choi Sun Young;Park Ki Hwa;Koh Gi Won
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.55-71
    • /
    • 2005
  • Jeju Island is mainly composed of basaltic lava flows and subordinate amounts of volcaniclastic sedimentary rocks. Jeju Province operates the monitoring wells for seawater intrusion problems around Jeju Island to evaluate of groundwater resources in coastal area. Various surveys and monitoring have been performed in boreholes, and also conventional geophysical well loggings conducted to identify basalt sequences and assess seawater intrusion problems. Various conventional geophysical well logs, including radioactive logs, electrical log, caliper log, and temperature and conductivity log and heat-pulse flowmeter log were obtained in 29 boreholes. The results of geophysical well loggings for saturated rocks are interesting and consistent. Natural gamma logs are useful in basalt sequences to sedimentary interbeds, unconsolidated U formation, and seoguipo formation with higher natural gamma log regardless of saturated or unsaturated basalts. Neutron logs are very effective to discriminate among individual lava flows, flow breaks, and sedimentary interbeds in saturated formation. In hyalocastite, porosity is high and resistivity is low, and we think that hyalocastite is a major pathway of fluid flow. In trachybasalt, porosity has a wide range and resistivity is high. In sedimentary interbeds, unconsolidated U formation and seoguipo formation, porosity is high and resistivity is low. The temperature logs in eastern area in Jeju are useful to interpret the hydrogeological unit and evaluate seawater intrusion in Suan area.

  • PDF

Evaluation of Chloride Ion Penetration Resistance of Coal Gasification Slag Replaced Concrete (석탄가스화 용융 슬래그 치환 콘크리트의 염화이온 침투 저항성 검토)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.166-167
    • /
    • 2019
  • In this study, to test the performance of concrete used as a concrete admixture as a recycling method of CGS, gypsum was mixed and the chloride ion penetration resistance test of CGS and BFS substituted concrete was conducted. As a result, it was found that without gypsum type test specimen, the CGS sustituted test specimens had lower chloride ion penetration resistance than the BFS substituted specimens. When gypsum was added, it was confirmed that the chloride ion penetration resistance was poor regardless of the type of admixture. In addition, it was confirmed that both admixtures were less resistant to chloride ion penetration than OPC, regardless of the presence of gypsum. However, considering the uneven quality variation of coal, which greatly affects the quality of CGS, further research is needed.

  • PDF

Characteristics of Flame Retardent and Mothproof Conservation of Microwave Heated wood (마이크로파 가열 목재의 방염·방충 복합 보존처리 특성)

  • Kim, Chong-Gun;Park, Cheul-Woo;Yoon, Tae-Ho;Lim, Nam-Gi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.234-246
    • /
    • 2013
  • It was found that test piece heated rapidly by 3 kW microwave for 5 minutes satisfies the targeted temperature and the percentage of moisture content, and the highest rate of weight increase is obtained in case of 120 minute immersion in the mixture of phosphates and heterocyclic compounds, from the result of such analysis as: kiln drying schedule, flame retardent by flammability test, insect resistance by termites, and permeability of combined penetrant for the wood after assigning multifunctional finish by immersing conifer structural frame, which is used for the frame work of wooden house and indoor/outdoor finishing in flame retardant and insect repellent materials mixture with the remaining heat of microwave. In addition, after a test of flame retardent treated item, it was identified that every mixture of phosphates corresponds with the standards of flame retardent, and upon investigation of moritality of 7 days after putting termites, it was showed that test piece immersed in the mixture of phosphates and heterocyclic compounds has the best characteristics, showing over 96% of high moritality. From the analysis of inward permeability of combined penetrant for the wood, it was decided that excellent performance in the flame retardent and insect resistance of the wood revealed due to full penetration of combined penetrant as it was found that combined penetrant penetrated through the whole inner cells of the wood.

The Physical Properties Variation of Grout Materials and Improvement of Grouting Effects on Application of High Performance Injection Equipment (고성능 주입장비의 적용에 따른 주입재의 물성변화 및 주입효과 증진에 관한 연구)

  • 천병식;김진춘;김백영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.179-190
    • /
    • 2003
  • The grout based on solution type makes it difficult to get the improvement of ground strength and the effefct of water curtain because it has lower strength and durability than suspension type. Nowadays, the technology of particle acceleration, that enhance the material permeability, such as grout based on solution type, and inexpensive grout, is being required. For these reasons, in this study, using wet milling system, we evaluated physical properties of manufactured factors such as water-cement ratio of particles before being milled, optimum milling capacity by controlling milling time and rpm, viscosity of materials, permeation coefficient, and unconfined compressive strength. Also, using micro wet milling apparatus which could manufacture ordinary Portland cement and high speed shear mix which could forcefully separate conglomerate particles in situ, we performed electrical resistivity investigation and falling head permeability tests to analyze differences of grouting effects. From these results, we found that the permeability of the applied equipment was much superior, and in the case of using high speed shear mixer, particles of grout material were well separated.

A Study on Prediction Model of Chloride ion Permeation of Cement Mortar by Steel Powder (염해환경에서의 염화물이온 침투 예측에 관한 연구)

  • Kim, Jeong-Jin;Park, Soon-Jeon;Ko, Joo-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.513-516
    • /
    • 2008
  • In this study the prediction model of Chloride Ion progress rate of concrete using steel powder as an addition is developed, in which the reduction of not only the diffusion rate of $Cl^-$ but also the corrosion rate by replenishment of pore by corrosion products. The model is based on the diffusions of $Cl^-$ and its reaction with $Fe^{2+}$, in chloride attack progression region. The model can also explain the characteristics of chloride ion permeation resistance of concrete that the matrix is densified due to corrosion products. The prediction by the model agreed well the experimental data in which the concrete using steel powder, and it showed the lower rate in long-term age to Chloride Ion progress rate than the concrete without steel powder. Consequently the model can predict Chloride Ion progress rate of concrete exposed in the atmosphere regardless of the water-to-cement raito, the amount of the content of steel powder, etc.

  • PDF

Characteristic of Microcracks with Mixing Proportional Properties of Concrete (미세균열이 콘크리트의 염소이온 침투에 미치는 영향 III; 배합조건 특성에 따른 미세균열의 특성)

  • Yoon, In-Seok;Kim, Young-Geun;Park, Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.469-475
    • /
    • 2008
  • It is obvious that chloride penetration through cracks can threaten the durability of concrete substantially, according to the previous studies of author. It was proposed that crack depth corrseponded with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It is now necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. The purpose of this study is examining the effect of mix proportional features of concrete such as coarse aggregate, high strengtherize of concrete and reinforcement of steel fiber on chloride penetration through cracks. Although small size of coarse aggregate can lead to many microcracks in concrete, the cracks should not impact on chloride penetration directly. On the contrary, chloride should penetrate through cracks easily in concrete with a large size of coarse aggregate because mixrocracks are connected to each other. Second, high strength concrete has an excellent performance to resist with chloride penetration. However, for cracked high strength concrete, its performance is reduced upto the level of ordinary concrete. Finally, steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly.

A Study on The Corrosion Resistance of Concrete Containing Copper Slag (동제련 슬래그 혼입 콘크리트의 부식 저항성에 관한 연구)

  • Lee, Dong-Un;Jung, Yoo-Jin;Kim, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.189-196
    • /
    • 2007
  • The purpose of this study was to analyze steel corrosion resistance of concrete containing copper slag. The specimens were made with normal portland cement and pozzolan materials with various replacement ratio and with W/B ratio ranging from 35% to 55%. Compressive strength, coefficient of chloride diffusion, corrosion area ratio and weight reduction ratio were determinated for the test. The results show that the concrete with pozzolan materials is superior resistant to chloride ions compared to the concrete without pozzolan materials. It was observed that blast furnace slag replacement ratio of 20% gives the best results with respect to chloride ion penetration and corrosion tests and observed that copper slag replacement ratio of 10% gives the seperior resistance compared to normal concrete.