• Title/Summary/Keyword: 침투력

Search Result 72, Processing Time 0.024 seconds

The Theoritical Analysis of the Slope Stability subjected to Seepage Force (침투력을 고려한 사면안정의 이론적 해석)

  • Gi-Bong Choi
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.151-155
    • /
    • 1996
  • The main purpose of this study was to develop a useful method for analysing slope stability by seepage force. The stability of an embankment impounding a water reservoir is highly depend upon the location of seepage line with the embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid rise change of reservoir level. Seepage forces in embankments are easily determined if frictional forces are expressed in relation to hydraulic gradient i. Seepage forces can combine with soil weights to improve stability or worsen it, depending on the direction in which the forces act ;n relation to the geometric cross section.

  • PDF

The Effect of Seepage Forces on the Tunnel Face Stability (침투력이 터널 막장의 안정성에 미치는 영향에 관한 연구)

  • 이인모;남석우;안재훈
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.165-172
    • /
    • 2001
  • 본 연구에서는 하천인접구간에서와 같이 지하수가 풍부한 지반에서 시공되는 터널의 막장 안정성을 평가하기 위하여 터널 막장에 작용하는 힘의 두 가지 요소를 고려하였다. 하나는 극한해석 중 upper bound solution으로부터 산출된 유효응력이며, 또 하나는 지하수의 정상류 흐름조건을 고려한 수치해석으로부터 산출된 침투력이다. 지하수가 풍부한 토사지반에서의 터널 시공시 터널 막장에 작용하는 힘을 구하기 위하여 침투력을 고려한 극한해석의 해를 구한 결과 터널 막장의 안정성을 유지하기 위한 최소 지보력은 터널 막장에 작용하는 유효응력과 침투력의 합으로 나타낼 수 있었다. 또한 터널 막장에 작용하는 평균침투압은 지하수위에 비례하여 작용하는 것으로 나타났으며, 이를 실내모형 실험 결과를 통하여 검증하였다. 지하수의 정상류 조건 하에서의 토사터널에 대한 실내모형 실험 결과, 터널 막장에 작용하는 침투력은 수치해석 결과 비슷한 양상을 보여주어 제안된 이론의 타당성을 입증하였다.

  • PDF

The ground reaction curve of underwater tunnels considering seepage forces (침투력을 고려한 터널의 지반반응곡선)

  • Shin, Young-Jin;Kim, Byoung-Min;Shin, Jong-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.183-204
    • /
    • 2007
  • When a tunnel is excavated below groundwater table, the groundwater flows into the excavated wall of tunnel and seepage forces are acting on the tunnel wall. Such seepage forces significantly affect the ground reaction curve which is defined as the relationship between internal pressure and radial displacement of tunnel wall. In this paper, seepage forces arising from the ground water flow into a tunnel were estimated quantitatively. Magnitude of seepage forces was decided based on hydraulic gradient distribution around tunnel. Using these results, the theoretical solutions of ground reaction curve with consideration of seepage forces under steady-state flow were derived. A no-support condition and a supported condition with grouted bolts and shotcrete lining were considered, respectively. The theoretical solution derived in this study was validated by numerical analysis. The changes in the ground reaction curve according to various cover depths and groundwater table conditions were investigated. Based on the results, the application limit of theoretical solutions was suggested.

  • PDF

Study on the Seepage Forces Acting on the Tunnel Face with the Consideration of Tunnel Advance Rate (터널 굴진율을 고려한 막장에서의 침투력에 관한 연구)

  • 남석우;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.221-228
    • /
    • 2002
  • The stability of a tunnel face is one of the most important factors in tunnel excavation. Especially, if a tunnel is located under groundwater level, groundwater may flow into the tunnel face and seepage forces acting on the tunnel face due to groundwater flow may affect seriously the stability of the tunnel face. Therefore, the seepage pressure at the tunnel face should be considered fir the proper design and safe construction of a tunnel. In this paper, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was made. From this study, it was concluded that the tunnel advance rate must betaken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology fer the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for undetwater tunnels.

Sand Levee의 사면안정 해석

  • 최기봉;안병철
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.207-213
    • /
    • 2003
  • 본 연구는 양수발전 등을 목적으로 축조한 소형 Dam 및 Sand Levee의 수위가 급상승할 경우 제체의 내측면에 미치는 영향을 Bishop's simplified method를 사용하여 Seepage Force(침투력)의 항을 중심으로 분석한 것이다. 특히 침투력의 항은 제체의 사면경사가 급할 경우 및 수위의 상승속도에 따라 제체의 안전성에 많은 영향을 미친다.(중략)

  • PDF

Convergence-confinement method of a tunnel with the consideration of seepage forces (침투력을 고려한 터널의 내공변위 제어 미케니즘)

  • Lee, In-Mo;Yoo, Seung-Youl;Nam, Seok-Woo;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.187-195
    • /
    • 2005
  • When a tunnel is excavated below groundwater table, the groundwater flow occurs towards the tunnel resulting in the seepage pressure. In this paper, the effect of groundwater flows on the behavior of shotcrete lining installed between ground-liner interfaces was studied considering permeability ratio between the ground and the shotcrete into account. Three-dimensional coupled finite element analysis was performed for this assessment. Seepage forces will seriously affect the shotcrete behavior since arching phenomena do not occur in seepage forces. A parametric study was conducted on the various tunnelling situations including interfacial properties between ground and shotcrete lining, the shape of tunnel cross-section and the thickness of liner, etc. Moreover, the convergence-confinement method (CCM) of a NATM tunnel considering seepage forces was proposed. The result showed that the more water tight is the shotcrete, the smaller is the convergence and the larger is the internal pressure. Therefore, the watertight fiber-reinforced shotcrete is found to be even more advantageous when used in under water tunnel.

  • PDF

Seepage-induced behaviour of a circular vertical shaft (침투를 고려한 원형수직터널 거동특성 연구)

  • Kim, Do-Hoon;Lee, Kang-Hyun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.431-450
    • /
    • 2011
  • When a circular vertical shaft is constructed below the groundwater level, additional forces caused by groundwater flow besides horizontal effective stresses will act on the wall. The inward direction of the groundwater flow will be inclined to the vertical wall and its direction will change depending on the wall depth. In this paper, to figure out the effect of seepage forces acting on the circular vertical shaft, the slope of the inclined flow varying with the depth is divided into vertical and horizontal components to derive the coefficient of earth pressure considering the seepage pressure and to obtain the vertical stress by taking the seepage pressure into account. The control volume in this study is assumed to be the same with that of the dry ground condition within which the earth pressure is acting on the wall by the creation of the plastic zone during shaft excavation. An example study shows that the vertical stress increases by about 1.4 times and the horizontal earth pressure increases up to 2.5 times compared to the dry ground condition. The estimated values from the proposed equation considering seepage forces and the calculated values from numerical analysis with "effective stress plus seepage force" show similar values, which verifies appropriateness of the proposed equation to estimate the earth pressure under the seepage condition.

The Effect of Seepage Forces on the Ground Reaction Curve of Tunnel (침투력이 터널의 지반반응곡선에 미치는 영향)

  • Lee Seok-Won;Jung Jong-Won;Nam Seok-Woo;Lee In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.87-98
    • /
    • 2005
  • When a tunnel is excavated below groundwater table, the groundwater flows into the excavated wall of tunnel and seepage forces are acting on the tunnel wall. The ground reaction curve is defined as the relationship between internal pressure and radial displacement of tunnel wall. Therefore, the ground reaction curve is significantly affected by seepage forces. In this study, the theoretical solutions of ground reaction curves were derived for both the dry condition and the seepage forces. The theoretical solutions derived were validated by numerical analysis. The ground reaction curves with the support characteristic curve were also analyzed in various conditions of groundwater table. Finally, the theoretical solutions of the ground reaction curve derived in this study can be utilized easily to determine the appropriate time of support systems, the stiffness of support system and so forth for the reasonable design.

Permeability and Dissolvability of Cathodic Electrolyzed Water for Electrophoretic Gel and Green Tea Components (전기영동 겔과 녹차성분에 대한 환원전리수의 침투력과 용해력)

  • Ryoo Kun-Kul;Lee Yoon-Bae;Lee Jong-Kwon;Lee Mi-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.87-93
    • /
    • 2005
  • The permeability of cathodic electrolyzed water toward electrophoretic gel and dissolvability of cathodic electrolyzed water toward green tea components were compared with those of general waters in this investigation. Stained band intensities of the proteins by CBB-R prepared in cathodic electrolyzed water were compared with those in deionized water for various time intervals. Proteins were stained first by CBB-R in cathodic electrolyzed water as compared with those by CBB-R in deionized water. Moreover, cathodic electrolyzed water showed dramatically enhanced solubility toward green tea components at $25^{\circ}C$ than general waters. These results suggest much greater permeability and dissolvability of cathodic electrolyzed water than those of general waters.

  • PDF

Studies on the permeability and dissolvability of cathodic electrolyzed water (음극전리수의 침투력과 용해력 연구)

  • Kim Jum-Ji;Kang Dong-Kyu;Ryoo Kun-Kul;Lee Yoon-Bae;Lee Jong-Kwon;Lee Mi-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.292-294
    • /
    • 2005
  • 본 연구에서는 전기영동 겔에 대한 음극전리수의 침투력과 녹차성분에 대한 음극전리수의 용해력을 일반 물과 서로 비교하였다. 음극전리수와 증류수로 제조한 CBB-R 염색시약으로 polyacrylamide 겔 상에서 단백질을 다양한 시간 동안 염색한 후 염색강도를 서로 비교하였다. 그 결과 음극전리수로 제조한 CBB-R 염색시약은 증류수로 제조한 CBB-R 염색시약보다 같은 반응 시간 동안에 먼저 단백질을 강하게 염색시켰다. 뿐만 아니라 $25^{\circ}C$에서 음극전리수는 일반 물에 비하여 녹차성분에 대해 극히 탁월한 용해력을 나타내었다.

  • PDF