• Title/Summary/Keyword: 침투가능성

Search Result 274, Processing Time 0.025 seconds

A Study on Mechanical Properties and Applicability of CNT-Mixed Grout (CNT-Mixed grout의 역학적 특성 및 적용성 연구)

  • Kim, Seunghyun;Kim, Kanghyun;Shin, Jongho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2022
  • In recent years due to the development of urban and underground space, the number of ground disasters is increasing, and it is also leading to social problems. To solve the problem, a grouting method is generally used. However, the grouting method has material (grout) limitations in permeability, gelation properties and tensile resistance. Therefore, research on grout materials mixed with fibers is actively carried out to improve the problems. However, in the actual ground injection process, many difficulties have been faced causing the blockage of the inlet port and the injection tube. In this study, 'CNT-mixed grout material' was developed using CNT powder that can reinforce the tensile strength of soils. The uniaxial compressive and tensile strength tests were performed to obtain the optimal content and mechanical properties of the CNT Powder-mixed grout. It was found that the optimal CNT powder content is 0.5% that gives the average maximum strength. A one-dimensional injection test and the bulb formation test were carried out, and it was identified that the injection rate and bulb form could be controlled by pressure and mixing ratio. Field application of the CNT-Mixed grout is simulated using numerical analysis of slopes, foundations, and tunnels reinforced in several types. The positive effect of reducing plastic ranges and settlements was confirmed.

"Hey Alexa, Would You Create a Color Palette?" UX/UI Designers' Perspectives on Using Natural Language to Interact with Future Intelligent Design Assistants ("알렉사, 색상 팔레트를 만들어줄 수 있어?" 지능형 디자인 비서와 자연어로 협업을 수행할 UX/UI 디자이너의 생각)

  • Bertao, Renato Antonio;Joo, Jaewoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.193-206
    • /
    • 2021
  • Artificial Intelligence (AI) has been inserted into people's lives through Intelligent Virtual Assistants (IVA), like Alexa. Moreover, intelligent systems have expanded to design studios. This research delves into designers' perspectives on developing AI-based practices and examines the challenges of adopting future intelligent design assistants. We surveyed UX/UI professionals in Brazil to understand how they use IVAs and AI design tools. We also explored a scenario featuring the use of Alexa Sensei, a hypothetical voice-controlled AI-based design assistant mixing Alexa and Adobe Sensei characteristics. The findings indicate respondents have had limited opportunities to work with AI, but they expect intelligent systems to improve the efficiency of the design process. Further, majority of the respondents predicted that they would be able to collaborate creatively with AI design systems. Although designers anticipated challenges in natural language interaction, those who already adopted IVAs were less resistant to the idea of working with Alexa Sensei as an AI design assistant.

Evaluation of the Depth of Improved Soil on Weathered Soil Slopes by Rainfall Duration (강우지속시간에 따른 풍화토사면의 개량토 심도 평가)

  • Yu, Jin-Ju;Lee, Jong-Woo;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, irregular torrential rainfall have frequently occurred due to abnormal climate, and landslide damage is increasing. In Korea, more than 70% of the total land is mountainous areas, appropriate measures are needed to prevent landslides by heavy rainfall. When improved soil is applied to the surface of the slope, it is possible to suppress an increase in groundwater level due to rainfall penetration and secure stability of the slope. In this study, the appropriate depth of improved soil that can confirm the increase in groundwater level and secure stability by applying improved soil to the weathered soil slope was studied. A total of three cases were analyzed for the slope of the cross-section: standard slope for weathered soil (1:1.5, 1:1.8, and 1:2.0). For rainfall conditions, referring to the regional frequency probability rainfall provided by the Water resource Management Information System, the increase in groundwater level by stage was confirmed by assuming a 500-year frequency precipitation maximum duration of 48 hours. As a result of the study, in the case of natural slopes, the slope was completely saturated before 48 hours the rainfall duration, and there was a possibility of collapse. the improvement depth in the slope of 1:1.5 was appropriate for more than 1m from the surface regardless of the rainfall duration, and in the the slope of 1:1.8 was appropriate of 1m for more than 36 hours. in the slope of 1:2.0, it was appropriate for that safety when improved soil of 0.5m for rainfall duration 48 hours or more.

Prediction of groundwater level in the middle mountainous area of Pyoseon Watershed in Jeju Island using deep learning algorithm, LSTM (딥러닝 알고리즘 LSTM을 활용한 제주도 표선유역 중산간지역의 지하수위 예측)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.291-291
    • /
    • 2020
  • 제주도는 강수의 지표침투성이 좋은 화산섬의 지질특성상 지표수의 개발이용여건이 취약한 관계로 용수의 대부분을 지하수에 의존하고 있다. 따라서 제주도는 정책 및 연구적으로 오랜 기간동안 지하수의 보전관리에 많은 노력을 기울여 오고 있다. 하지만 최근 기후변화로 인한 강수의 변동성 증가로 인해 지하수위의 변동성 또한 증가할 가능성이 있으며 따라서 지하수위의 급격한 하강에 대비하여 지하수위의 예측 및 지하수 취수량 관리의 필요성이 요구되고 있다. 지하수에 절대적으로 의존하고 있는 제주도의 수자원 이용 여건을 고려할 때, 지하수의 취수량 관리를 위한 지하수위의 실시간 예측이 필요한 실정이다. 하지만 기존의 예측방법에 의한 제주도 지하수위 예측기간은 충분히 길지 않으며 예측기간이 길어지면 예측성능이 낮아지는 문제점이 있었다. 본 연구에서는 이러한 단점을 보완하기 위해 딥러닝 알고리즘인 Long Short Term Memory(LSTM)를 활용하여 제주도 남동쪽 표선유역 중산간지역의 1개 지하수위 관측정에 대해 지하수위를 예측하고 분석하였다. R 기반의 Keras 패키지에 있는 LSTM 알고리즘을 사용하였고, 입력자료는 인근의 성판악 및 교래 강우관측소의 일단위 강수량자료와 인근 취수정의 지하수 취수량자료 및 연구대상 관측정의 지하수위 자료를 사용하였으며, 사용된 자료의 기간은 2001년 2월 11일부터 2019년 10월 31일까지 이다. 2001년부터 13년의 보정 및 3년의 검증용 시계열자료를 사용하여 매개변수의 보정 및 과적합을 방지하였고, 3년의 예측용 시계열자료를 사용하여 LSTM 알고리즘의 예측성능을 평가하였다. 목표 예측일수는 1일, 10일, 20일, 30일로 설정하였으며 보정, 검증 및 예측기간에 대한 모의결과의 평가지수로는 Nash-Sutcliffe Efficiency(NSE)를 활용하였다. 모의결과, 보정, 검증 및 예측기간에 대한 1일 예측의 NSE는 각각 0.997, 0.997, 0.993 이었고, 10일 예측의 NSE는 각각 0.993, 0.912, 0.930 이었다. 20일 예측의 경우 NSE는 각각 0.809, 0.781, 0.809 이었으며 30일 예측의 경우 각각 0.677, 0.622, 0.633 이었다. 이것은 LSTM 알고리즘에 의한 10일 예측까지는 관측 지하수위 시계열자료를 매우 적절히 모의할 수 있다는 것을 의미하며, 20일 예측 또한 적절히 모의할 수 있다는 것을 의미한다. 따라서 LSTM 알고리즘을 활용하면 본 연구대상지점에 대한 2주일 또는 3주일의 안정적인 지하수위 예보가 가능하다고 판단된다. 또한 LSTM 알고리즘을 통한 실시간 지하수위 예측은 지하수 취수량 관리에 활용할 수 있을 것이다.

  • PDF

Development of a Probabilistic Joint Opening Model using the LTPP Data (LTPP Data를 이용한 확률론적 줄눈폭 예측 모델 개발)

  • Lee, Seung Woo;Chon, Sung Jae;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.593-600
    • /
    • 2006
  • Joint opening of jointed concrete pavement is caused by change in temperature and humidity of adjoined slab. The magnitude of joint opening influences on the load-transfer-efficiency and the behavior of sealant. If temperature or humidity decreases, joint opening increases. Generally maximum joint opening of a given joint is predicted by using AASHTO equation. While different magnitudes of joint opening at the individual joints have been observed in a given pavement section, AASHTO equation is limited to predict average joint opening in a given pavement section. Therefore the AASHTO equation may underestimate maximum joint for the half of joint in a given pavement section. Joints showing larger opening than the designed may experience early joint sealant failure, early faulting. Also unexpected spalling may be followed due to invasion of fine aggregate into the joints after sealant pop-off. In this study, the variation of the joint opening in a given pavement section was investigated based on the LTPP SMP data. Factors affecting on the variation are explored. Finally a probabilistic joint opening model is developed. This model can account for the reliability of the magnitude of joint opening so that the designer can select the ratio of underestimated joint opening.

Experimental Study on Establishing Measurement Management Criteria for Soil Slope Failure by Using Reduction-Scale and Full-Scale Slope Experiments: Based on Matric Suction (소형 및 실규모 급경사지 실험을 통한 계측관리기준 개발을 위한 실험적 연구: 모관흡수력을 기준으로)

  • Hyo-Sung Song;Young-Hak Lee;Seung-Jae Lee;Jae-Jung Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.555-571
    • /
    • 2023
  • Due to South Korea's concentrated summer rainfall, constituting 70% of the annual total, landslides frequently occur during the rainy season, necessitating accurate prediction methods to mitigate associated damage. In this study, a reduced-scale and full-scale slope was configured using weathered granite soil to find the possibility of establishing measurement management criterias through landslide reproduction. The experiment focused on matric suction, analyzing changes in ground properties and failure patterns caused by rainfall infiltration. Subsequently, an unsaturated infinite slope stability analysis was conducted. By calculating the failure time when the safety factor falls below 1 for each experiment, landslide prediction was demonstrated to be possible, approximately 17 minutes prior for the reduction-scale experiment and 6.5 hours for the full-scale experiment. These findings provide useful data for establishing Korean soil slope measurement management criteria that consider the characteristics of weathered granite soil.

Fabrication of Porous Cu Layers on Cu Pillars through Formation of Brass Layers and Selective Zn Etching, and Cu-to-Cu Flip-chip Bonding (황동층의 형성과 선택적 아연 에칭을 통한 구리 필라 상 다공성 구리층의 제조와 구리-구리 플립칩 접합)

  • Wan-Geun Lee;Kwang-Seong Choi;Yong-Sung Eom;Jong-Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.98-104
    • /
    • 2023
  • The feasibility of an efficient process proposed for Cu-Cu flip-chip bonding was evaluated by forming a porous Cu layer on Cu pillar and conducting thermo-compression sinter-bonding after the infiltration of a reducing agent. The porous Cu layers on Cu pillars were manufactured through a three-step process of Zn plating-heat treatment-Zn selective etching. The average thickness of the formed porous Cu layer was approximately 2.3 ㎛. The flip-chip bonding was accomplished after infiltrating reducing solvent into porous Cu layer and pre-heating, and the layers were finally conducted into sintered joints through thermo-compression. With reduction behavior of Cu oxides and suppression of additional oxidation by the solvent, the porous Cu layer densified to thickness of approximately 1.1 ㎛ during the thermo-compression, and the Cu-Cu flip-chip bonding was eventually completed. As a result, a shear strength of approximately 11.2 MPa could be achieved after the bonding for 5 min under a pressure of 10 MPa at 300 ℃ in air. Because that was a result of partial bonding by only about 50% of the pillars, it was anticipated that a shear strength of 20 MPa or more could easily be obtained if all the pillars were induced to bond through process optimization.

Evaluating the Influence of Post-Earthquake Rainfall on Landslide Susceptibility through Soil Physical Properties Changes (지진이후 강우의 산사태 발생 영향성 평가를 위한 토양물성값 변화 분석)

  • Junpyo Seo;Song Eu;KiHwan Lee;Giha Lee;Sewook Oh
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.270-283
    • /
    • 2024
  • Purpose: Considering the rising frequency of earthquakes in Korea, it is crucial to revise the rainfall thresholds for landslide triggering following earthquake events. This study was conducted to provide scientific justification and preliminary data for adjusting rainfall thresholds for landslide early warnings after earthquakes through soil physical experiments. Method: The study analyzed the change in soil shear strength by direct shear tests on disturbed and undisturbed samples collected from cut slopes. Also, The study analyzed the soil strength parameters of remolded soil samples subjected to drying and wetting conditions, focusing on the relationship between the degree of saturation after submergence and the strength parameters. Result: Compaction water content variation in direct shear tests showed that higher water content and saturation in disturbed samples led to a significant decrease in cohesion (over 50%) and a reduction in shear resistance angle (1~2°). Additionally, during the ring shear tests, the shear strength was observed to gradually decrease once water was supplied to the shear plane. The maximum shear strength decreased by approximately 65-75%, while the residual shear strength decreased by approximately 53-60%. Conclusion: Seismic activity amplifies landslide risk during subsequent rainfall, necessitating proactive mitigation strategies in earthquake-prone areas. This research is anticipated to provide scientific justification and preliminary data for reducing the rainfall threshold for landslide initiation in earthquake-susceptible regions.

A Study on Marketing Strategies According to Changes in Domestic Fashion Jewelry Consumption Trends (국내 패션주얼리 소비 트랜드 변화에 따른 마케팅 전략에 관한 연구)

  • Jung-Jin Chun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.331-339
    • /
    • 2024
  • This study seeks to expand the jewelry market and overall development of the industry by understanding the fashion jewelry market and researching marketing strategies based on changes in market consumption. Looking at recent changes in the jewelry market, the number of new consumers (fashion jewelry buyers) has increased since 2014, leading to a recovery in purchases and strong sales. However, the decline in costs is prolonged, the focus on purchasing low-priced products is increasing, and there is a growing trend of purchasing products other than rings. Items are becoming more diverse, including bracelets and necklaces, and the popularity of imported products and brands is intensifying. Ultimately, the penetration of fashion jewelry and the growth of imported brands are expected to continue for a long time. The fashion jewelry market is a market that appears to have ample potential to grow into a larger market, filling the structural limitations of the jewelry market and providing consumer satisfaction in line with recent consumption trends. If so, We need to think about how to grow and develop this market, and We need to view it as a jewelry market in a broad sense, and it is a market that can serve as a bridgehead for the precious metal jewelry market to expand into the accessory market in the future. Therefore, it is necessary to create a jewelry market by utilizing the advantages of fashion jewelry, such as diversity of materials and expressions, price competitiveness, wide distribution channels and consumer accessibility, reflection of trends, and consumer awareness.

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.