• Title/Summary/Keyword: 침출거동

Search Result 117, Processing Time 0.035 seconds

Construction and Interpretation of a Hydrogeologic Data Base for the Nanjido Landfill (난지도 매립지의 수리지질학적 자료를 이용한 데이터 베이스 구축 및 활용)

  • 김윤영;이강근;정상용;이철효
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.80-94
    • /
    • 1996
  • The Nanjido Landfill has recently become one of the most important environmental sites for a hydrogeological study. Hydrogeological study was performed by understanding the current situation, analyzing hydrogeological information, and constructing a hydrogeological data base. The constructed data base was used for the analyses of several important phenomena in the Nanjido Landfill. Saturated hydraulic conductivity and underground temperature were measured. Based on the hydraulic conductivity and rainfall data, net infiltration rates were estimated. Leachate production rates are estimated by using the data base. The data base and a hydraulic model were used to understand the formation of the so called floating leachate layer.

  • PDF

A Study on the Bioleaching of Cobalt and Copper from Cobalt Concentrate by Aspergillus niger strains (Aspergillus niger 균주를 이용(利用)한 코발트 정광(精鑛)으로부터 코발트 및 구리의 미생물(微生物) 침출(浸出) 연구(硏究))

  • Ahn, Hyo-Jin;Ahn, Jae-Woo;Bang, Duk-Ki;Kim, Meong-Woon
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.44-52
    • /
    • 2013
  • Bioleaching behavior of metal ions for recovery of cobalt and copper from cobalt concentrate was investigated by employing three Aspergillus niger strains. Various factors, such as organic acid generation with fungi type, pH of the culture and pulp density were studied. The results showed that the best fungi for organic acid(citric acid and oxalic acid) generation was A. niger KCTC 6144 using Malt Extract Broth culture at initial pH 3.5. But A. niger KCTC 6985 was more effective for the leaching of cobalt and copper from cobalt concentrate. Our results showed that 82% cobalt and 98% copper was dissolved by A. niger KCTC 6985 at 10g/L pulp density, at pH 3.5 and $24^{\circ}C$ after 15 days incubation.

Treatment of Black Dross with Water and NaOH Solution (물과 수산화나트륨용액에 의한 블랙 드로스의 처리)

  • Xing, Wei Dong;Ahn, Byung Doo;Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.53-60
    • /
    • 2017
  • Black dross contains metallic aluminium, alumina, silica, MgO, soluble salts together with minor ingredients. Control of silica in black dross is important in transforming the black dross into usable materials. First, most of the soluble salts (KCl and NaCl) in black dross were dissolved in water at reaction temperature of $50^{\circ}C$. Leaching behavior of silica, alumina, MgO and $TiO_2$ from the residue after water treatment was investigated by varying NaOH concentration and reaction temperature. Reaction temperature ($25{\sim}95^{\circ}C$) was favorable to the leaching of alumina but an optimum temperature existed for silica. MgO was not dissolved at all in the NaOH concentration range from 2 to 6 M. At the leaching condition of 5 M NaOH and reaction temperature of $95^{\circ}C$, approximately 80% of alumina and 68% of silica was dissolved.

Electrophoretic Characteristics of the Clay Particles Affected by Chemical Species of Leachate (매립지 침출수 화학종에 따른 점토입자의 전기영동 특성)

  • Kim, Jong-Yun;Han, Sang-Jae;Kim, Soo-Sam;Park, Jea-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.217-228
    • /
    • 2009
  • In case of application of electrophoresis method for leakage restoration of waste impoundment, main points of consideration were to evaluate the mobility of clay particles by electrophoretic force and capacity of leakage repair in leachate electrolyte system contained with various chemical species. However, the flocculation phenomena of clay particles induced by electrochemical interaction between various chemical species and clay particles would cause the big problems in electrophoresis method. Therefore, a series of laboratory tests such as one-dimensional electrophoresis and gravitational experiments were carried out in order to identify the specific chemical species affected flocculation of clay particles and the range of chemical concentration in leachate. In addition, the characteristics of clay particle behavior with chemical species and concentration range in leachate were analized using the concept of the settling velocity, zeta potential, and electrophoretic velocity.

Recovery of Molybdenum and Vanadium from Acidic Leaching Solution of Spent Catalysts by Solvent Extraction (폐촉매(廢觸媒) 산성침출액(酸性浸出液)으로부터 용매추출(溶媒抽出)에 의한 몰리브덴과 바나듐의 회수(回收))

  • Nguyen, Hong Thi;Lee, Man Seung
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.3-11
    • /
    • 2013
  • The recovery of molybdenum and vanadium from acid leaching solutions of spent catalysts using solvent extraction has been investigated. Among various acid leaching solutions, sulfuric acid solution is found to be adequate for the recovery of these two metals. The extraction and stripping behavior of the two metals in the absence and presence of other impurity metals by various types of extractants such as cationic, solvating, amine and a mixture of cationic and solvating extractants was discussed. Each type of extractants has advantage and disadvantage in terms of the possibility of separation and of forming a third phase. Among the various types of extractants, a mixture of cationic and solvating extractants seems to be the most promising extractant system for the separation of Mo and V from the acid leaching solutions of spent catalysts.

Performance comparison of acidogenic fermentation and hydrogen fermentation using bench-scale leaching-bed reactors for food waste (벤치스케일 침출상 반응조를 이용한 음식폐기물 처리 시 신발효 및 수소발효의 거동특성 비교)

  • Han, Sun-Ki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.97-105
    • /
    • 2007
  • This study was conducted to compare the performances of acidogenic fermentation and hydrogen fermentation using bench-scale leaching-bed reactors for organic solid waste. Acidogenic fermenters were operated with dilution rates (D) of 2.0, 3.0 and $4.0d^{-1}$ after employing anaerobic sludge and hydrogen fermenters were operated with D of 2.0, 4.0 and $6.0d^{-1}$ after employing heat-treated anaerobic sludge. The highest chemical oxygen demand (COD) conversion efficiency (56.2%) was obtained in acidogenic fermentation with D of $3.0d^{-1}$. Only volatile fatty acid (VFA) was produced as a metabolite. On the other hand, hydrogen fermentation did not show higher COD conversion efficiency (49.3%) than acidogenic fermentation, but it produced hydrogen gas (5.1% of total COD) which was a clean and environmentally friendly fuel with a high energy yield. Therefore, either acidogenic fermentation or hydrogen fermentation could be applied to organic solid waste depending on the purpose of treatment, which could maximize the economics of anaerobic treatment.

  • PDF

Influence of pH on Leaching Behavior of Phosphorous from Steelmaking Slag (제강슬래그에서 인의 침출 거동에 대한 pH의 영향)

  • Kim, Jeong-In;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.23-28
    • /
    • 2016
  • In this study, leaching process to extract phosphorus from the steelmaking slag was investigated for using the fertilizer resources of agriculture. In general, the phosphorus of steelmaking slag is formed as $C_2S-C_3P$ solid solution, and also, this solid solution is soluble in water more than the other phase in slag, and less than free CaO phase. In the present experiment, the influence of pH on the leaching behavior of various elements from the steelmaking slag was investigated by using multi-component steelmaking slag. When the pH was decreased, the concentration of Ca, Si, P and Fe in solution from the steelmaking slag was increased. Furthermore, at a pH of 3, the concentration of P ion in solution was decreased as leaching time increased. It is considered that the decrement of P was caused from the precipitation reaction between P ion and Fe ion in solution.