• 제목/요약/키워드: 침엽수림

Search Result 218, Processing Time 0.026 seconds

Evaluation of Runoff from Forest Watershed with Different Vegetation Using GeoWEPP Model (GeoWEPP 모델을 이용한 임상별 유출특성 평가)

  • Choi, Jae-Wan;Shin, Min-Hwan;Shin, Ki-Sik;Lee, Jae-Woon;Cheon, Se-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1258-1262
    • /
    • 2010
  • 현재 비점오염원의 정량화를 위하여 정부에서는 지목별 모니터링을 통하여 원단위를 산정하고 있으며, 이를 이용해 수질개선을 위한 수질오염총량관리제를 더욱 효과적으로 운영 평가하기 위한 노력을 하고 있다. 특히, 전 국토의 70% 이상을 차지하고 있는 산림에서 발생되는 유출수에 대한 특성을 파악하는 것이 중요하다. 보통 산림 유출 특성은 모니터링을 수행하여 파악하는 것이 가장 정확한 방법이지만, 지형 작물 시간 강우 패턴 등의 다양한 조건에서 모니터링을 수행하는 것이 어렵다. 또한 지점선정 장비구입 인건비 등 많은 비용이 요구되어 모델링을 통해 시 공간적으로 유출 특성을 평가하고자 하는 연구들이 활발히 진행 중이다. 본 연구는 GIS에서 WEPP 모형의 구동이 가능하게 된 GeoWEPP 모형을 이용하여 활엽수림 침엽수림 혼효림에서 강우시 발생하는 유출량을 모의하여 실측 유출량과의 비교 평가를 통해서 GeoWEPP 모형의 정확성을 평가하는데 있다. 모델 평가를 위해 $R^2$와 Nash-Sutcliffe model Efficiency (NSE)를 사용하였다. 활엽수림 지점은 2009년 총 10개의 강우 발생으로부터 유출량이 산정되었는데, $R^2$와 NSE는 각각 0.98와 0.87로 나타났다. 침엽수림 지점은 14개의 강우 발생시 산정된 유출을 이용하여 모델을 평가하였는데, $R^2$와 NSE가 각각 0.91와 0.90으로 나타났다. 혼효림 지점은 총 10개의 강우 발생시 산정된 유출을 이용하여 모델을 평가한 결과 $R^2$와 NSE가 각각 0.98와 0.94로 나타나 GeoWEPP 모델이 임상별 유출량을 잘 반영하는 것으로 나타났다. 본 연구 결과에서 보이는 바와 같이 GeoWEPP 모형이 임상별 유출특성을 매우 정확하게 예측할 수 있다고 판단된다.

  • PDF

Faunal List of Oribatid Mites ( Acari : Oribatida) at the 44th (deciduous) and 45th (coniferous) compartment in Kwangreung, Korea (광릉지역의 날개응애(Acari : Oribatida) 목록 : 44임반(활엽수림)과 45임반(침엽수림)을 중심으로)

  • Park, Hong-Hyun;Jung, Chul-Eui;Lee, Joon-Ho;Choi, Seong-Sik;Lee, Buom-Young
    • The Korean Journal of Soil Zoology
    • /
    • v.1 no.2
    • /
    • pp.95-101
    • /
    • 1996
  • A total of 101 species belonging to 76 genera under 42 families in Kwangreung coniferous forest (45th compartment) and 108 species belonging to 69 genera under 40 families in Kwangreung deciduous forest (44th compartment) was reported, respectively.

  • PDF

Application of the Modified CA-Markov Technique for Future Prediction of Forest Land Cover in a Mountainous Watershed (미래 산림식생변화 예측을 위한 개선된 CA-Markov 기법의 적용)

  • Park, Min-Ji;Park, Geun-Ae;Lee, Yong-Jun;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • 토지피복은 대부분의 수문 수질 모형의 중요한 매개변수로서, 수자원 변화 예측에 중요한 입력자료로 활용되고 있다. 본 연구에서는 개선된 CA (Cellular Automata)-Markov 기법을 이용하여 충주댐유역의 미래 산림식생변화에 대한 예측을 시도하였다. 예측과정으로 과거의 Landsat TM 영상 (1985, 1990, 1995, 2000)을 이용하여 기법의 정확도 검증 및 산림분포의 변화경향을 파악하고, Landsat 산림은 2000년과 2005년의 NOAA AVHRR NDVI값을 기준으로 침엽수림, 혼효림, 활엽수림의 3종으로 구분한 후, 이를 이용하여 2030년, 2060년, 2090년의 식생변화를 추정하는 방법을 제안하였다. 이 방법의 적용결과, 2000년과 비교하여 2090년의 활엽수림과 혼효림은 각각 14.3 %, 11.6 % 증가하였으며, 침엽수림은 24.9 % 감소하는 것으로 나타났다. 과거의 경향성에 의해 예측을 시도한 본 연구결과는 미래 토지피복 변화에 따른 수문 수질 영향 분석시 지표 조건의 불확실성을 줄이는데 활용될 수 있다고 판단된다.

Vegetation Classification, Species Diversity, and Structural Characteristics of Coniferous Forest in Baekdudaegan Protected Area, Korea (백두대간 보호지역 침엽수림의 식생분류, 종다양성 및 구조적 특성)

  • Cho, Hyun-Je;Kim, Jun-Soo;Cho, Joon-Hee;Oh, Seung-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.516-529
    • /
    • 2021
  • Coniferous forests in the Baekdudaegan protected area are gradually losing their landscape diversity and uniqueness along with their ecological stability due to changes in vegetation composition and structures caused by various disturbance factors, such as climate change, vegetation succession, and human interference. This study provides basic data for establishing a comprehensive conservation plan for coniferous forests in the Baekdudaegan protected area. We classified the vegetation unit types using the Zurich-Montpellier School of Phytosociology and two-way indicator species analysis methods and analyzed the species diversity and structural characteristics based on the vegetation information of 755 stands collected in the natural resources change survey of the Baekdudaegan mountains (2016 to 2020) by the Korea Forest Service. Therefore, the vegetation of the coniferous forests of theBaekdudaegan protected area was classified into 15 types under the vegetation unit hierarchy of two community groups, four communities, seven sub-communities, and 14 variants. Furthermore, we compared the total coverage among vegetation types, importance values, constancy classes, life-forms, and diversity indices. Additionally, the average total coverage and number of species per 100 m2 of all coniferous forests were 232% and 21 species, respectively, with the species diversity and dominance indices averaging 1.907 and 0.222, respectively.

The Characteristics of Runoff from a Forest Watershed with Different Vegetation (식생이 다른 산림유역 유출수의 특성)

  • Lee, Ho-Beom;Park, Chan-Oh;Shin, Dae-Yewn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.311-316
    • /
    • 2007
  • In this study, we investigated the presence of nitrogen, phosphorus, ions, heavy metals and other contaminations in the water stream and soil of the forest watershed with different geology and vegetations for one year from October 2004 to September 2005. Most of the nitrogen oxide in the soil was in the form of $NO_3^-$, and it appeared that nitrogen contents decreased as the soil depth increased. Nitrogen contents was highest in the basalt area showing 13.3 mg/g in the surface soil and 7.40 mg/g in the subsoil. Phosphorous contents showed no significant variations depending on the soil depth and was higher in the intermediate soil layer(60 cm) than in surface soil (30 cm) in granite and metamorphic rock areas. Nitrogenous compound in the soil water was 8.03 mg/L in the granite area of coniferous forest and 14.79 mg/L in the andesite area of the deciduous forest. Nitrogenous compound in the stream water was 5.53 mg/L in October and 6.99 mg/L in January in the granite area of the coniferous forest and $3.61\sim5.11$ mg/L in the andesite area of the deciduous forest. Phosphates in runoff and stream water were similar in coniferous with in deciduous forests, showing a slight increase(0.090$\sim$0.179 mg/L) in the basalt area. In the coniferous forest, pH showed a significant positive correlation with EC, $Ca^{2+}$ and $Cl^-$ at p < 0.01, and showed a negative correlation with S-Fe and S-Al. Electroconductivity showed a significant correlation of 0.601 with $Ca^{2+}$ and of -0.586 with $NO_3^-$ at p<0.01, and showed a significant correlation of 0.301 with $SO_4^{2-}$ and of -0.295 with S-Fe at p < 0.05. In the deciduous forest, pH showed a positive correlation with $Ca^{2+}$ at p < 0.05, and showed a negative correlation with $K^+$, S-Fe and S-Al at p < 0.01. Electroconductivity showed a significant positive correlation with $Ca^{2+}$ and $Cl^-$ at p < 0.05 and with $NO_3^-$ at p < 0.01.

Changes of Chemical and Microbial Properties of Soils after Forest Fires in Coniferous and Deciduous Forests (침엽수와 활엽수 산림에서 산불 후 토양화학적 및 토양미생물학적 특성 변화)

  • Kim, Jong-Gap;O, Gi-Cheol
    • The Korean Journal of Ecology
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • This study was carried out to examine the recovery of forest ecosystem by changes of soil chemical properties and soil microorganism at the burned areas of coniferous (Mt. Chocdae) and broad leaved forest (Samsinbong in Mt. Chiri). In the soil chemical properties of the burned area of Samsinbong, pH was 5.8, and contents of organic matter, total nitrogen, available P₂O/sub 5/, exchangeable K/sup +/, exchangeable Ca/sup ++/ and exchangeable Mg/sup ++/ were 7.42%, 0.73%, 28.5 ㎎/㎏, 1.3 me/100g, 13.3 me/100g and 2.2 me/100g, respectively. But they showed a tendency to decrease with time. In the soil chemical properties of the burned area of Mt. Chocdae, pH was 5.3, and contents of organic matter, total nitrogen, available P2O5, exchangeable K/sup +/, exchangeabe Ca/sup ++/ and Exchangeable Mg/sup ++/ were 6.42%, 0.25%, 24.4 ㎎/㎏, 0.7 me/100g, 3.7 me/100g and 2.1 me/100g, respectively, and they also showed a tendency to decrease with time. In contrast, they were not changed with time at the unburned areas. At the burned area of Samsinbong, soil microorganism showed to order of fungi (69×10⁴ CFU), actinomycetes (523×10⁴ CFU) and aerobic bacteria (291×10⁴ CFU), and at the unburned area, showed to order of actinomycetes (745×10⁴ CFU), fungi (594×10⁴ CFUU), and aerobic bacteria (160×10/sup 4/ CFU). At the burned area of Mt. Chocdae, soil microorganism showed to order of fungi (676×10⁴ CFU), actinomycetes (434×10⁴ CFU) and aerobic bacteria (350×10⁴ CFU), and at the unburned area, showed to order of fungi (461 ×10⁴ CFU), aerobic bacteria (328×10⁴ CFU) and actinomycetes (319×10⁴ CFU). Soil microorganisms of the aerobic bacteria, actinomycetes and fungi appeared at the burned areas were much more abundant than unburned areas. The aerobic bacteria appeared at the coniferous forest were also much more than the broad-leaved forest. The actinomycetes and fungi appeared at the broad-leaved forest were much more abundant than the coniferous forest.

  • PDF

Effect on the Temperature in Forest Dominant Vegetation Change (산림 우점식생 변화가 온도에 미치는 영향)

  • An, Mi-Yeon;Hong, Suk-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • This study investigated the effect of forest type changes in Daegu, the hottest city in Korea, on the land surface temperature (LST). The LST change by forest type was analyzed by 2scene of Landsat TM image from 1990 to 2007. The land cover types were classified into 4 types; forest areas, urban areas, cultivated areas and other areas, and water areas. The forest areas were further classified into the coniferous tree areas and the broadleaf tree areas. The result of the statistical analysis of the LST change according to the forest type showed that the LST increased when the forest was changed to the urban area. The LST increased by about $0.6^{\circ}C$ when a broadleaf tree area was changed to an urban area and about $0.2^{\circ}C$ when a coniferous tree area was changed to an urban area. This was the temperature change as the result of the simple type change for 17 years. The temperature change was larger when considering both cases of the forest type being retained and changed. The LST increased by $2.3^{\circ}C$ more when the broadleaf tree areas were changed to the urban areas than when broadleaf trees were maintained. The LST increased by $1.9^{\circ}C$ more when the coniferous tree areas were changed to the urban areas than when the coniferous tree areas were maintained. The LST increased by $0.4^{\circ}C$ more when the broadleaf tree areas were destroyed than when the coniferous tree areas were destroyed. The results confirmed that the protection of broadleaf trees in urban forests was more effective for mitigating climate change.

Community Distribution on Mountain Forest Vegetation of the Birobong Area in the Odaesan National Park, Korea (오대산 국립공원 비로봉 일대 산지 삼림식생의 군락분포에 관한 연구)

  • Choi, Young-Eun;Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.91-102
    • /
    • 2014
  • Forest vegetation of Birobong (1,563 m) in Odaesan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, subalpine coniferous forest, subalpine broad-leaved forest, afforestation and etc., while riparian forest was found under the category of flatland forest vegetation. Including 196 communities of mountain forest vegetation, 1 community of flatland forest vegetation and 4 communities of other vegetation, the total of 201 communities were researched; the distributed colonies classified by physiognomy classification are 62 communities deciduous broad-leaved forest, 84 communities of valley forest, 15 communities of coniferous forests, 16 communities of subalpine coniferous forest, 3 communities of subalpine broad-leaved forest, 16 afforestation, 1 community of flatland forest and 4 other communities. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus variabilis, Tilia amurensis communities account for 37.08 percent of deciduous broad-leaved forest, Juglans mandshurica, Fraxinus mandshurica, Cornus controversa, Populus koreana community takes up 1.59 percent of mountain valley forest, Pinus densiflora community holds 6.65 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Quercus variabilis, Tilia amurensis, Juglans mandshurica, Fraxinus mandshurica, Cornus controversa, Populus koreana, Pinus densiflora are distributed as dominant species of the uppermost part in a forest vegetation of Birobong in Odaesan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Tilia amurensis and Juglans mandshurica which are climax species in the area. However, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.

Analyzing the Impacts of Climate Change on Forest Composition in Korea (산림의 임상구조 결정요인 분석과 기후변화에 따른 임상구조 변화 예측)

  • Lee, Honglim;Kwon, Oh Sang
    • Environmental and Resource Economics Review
    • /
    • v.26 no.2
    • /
    • pp.229-255
    • /
    • 2017
  • This study empirically estimates the impacts of climate change on forest composition in Korea using a fractional data regression model, and forecasts the change in forest composition in the 2040s and 2090s based on the IPCC climate change scenarios. Unlike the forest science studies that incorporate mostly only ecological variables as the determinants of forest composition, we take into account regional level socio-economic and forest management variables as well. Our estimation results found that not only environmental factors but also socio-economic and forest management related factors strongly affect the composition of Korean forest. Based on the estimation results and IPCC scenarios on climate change, we predict that the share of currently dominant coniferous forest will decline in the future under all scenarios. About 10% of total forest area is likely to be converted from coniferous forest into broadleaved forest until 2090s under the scenario RCP 8.5. It is also predicted that there will be a substantial regional variation in the effects of climate change on forest composition, and the coniferous forests in the inland regions will decline more dramatically.

Community Distribution on Mountain Forest Vegetation of the Noinbong Area in the Odaesan National Park, Korea (오대산 국립공원 노인봉 일대 삼림식생의 군락분포에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Kang, Eun-Ok;Choi, Young-Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.103-115
    • /
    • 2014
  • Forest vegetation of Noinbong (1,338 m) in Odaesan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, subalpine coniferous forest, subalpine deciduous forest, shrub forest, riparian forest, afforestation and other vegetation. Including 196 communities of mountain forest vegetation and 7 communities of other vegetation, the total of 203 communities were researched; mountain forest vegetation classified by physiognomy classification are 62 communities deciduous broad-leaved forest, 85 communities of mountain valley forest, 18 communities of coniferous forests, 3 communities of subalpine coniferous forests, 4 communities of subapine deciduous forests, 2 communities of shrub forests, 1 communities of riparian forests, 21 afforestation and 7 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 54.856 percent of deciduous broad-leaved forest, Fraxinus mandshurica - Cornus controversa community takes up 15.482 percent of mountain valley forest, Pinus densiflora community holds 78.091 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Tilia amurensis, Fraxinus mandshurica, Cornus controversa, Quercus serrata, and Quercus variabilis are distributed as dominant species of the uppermost part in a forest vegetation region in Odaesan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area.