• Title/Summary/Keyword: 침수 분석

Search Result 1,024, Processing Time 0.022 seconds

The Study for Understanding of Residents to Landslide Mitigation Projects with Respect to develop Socio-Economic Damage Level Standards of Landslide Disasters (산지토사재해 인문사회적 피해강도 기준 개발을 위한 지역주민의 산사태 방재 사업 인식에 대한 연구)

  • Kim, Geunyoung;Lee, Chang-Woo;Kim, Kyongha;Woo, Choongshik;Park, Keunoh
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.3
    • /
    • pp.347-357
    • /
    • 2013
  • Abstract The objective of this study is to investigate and analyze understanding of residents living in landslide disaster impact areas to landslide mitigation and recovery projects with respect to develop socio-economic damage level standards of landslide disasters. South Korea is one of the representative mountain-side urbanized countries that cities have been developed through mountain-side urbanization due to high population density because mountain areas occupy 64 percent of the total land proportion. South Korea were recently suffered from the massive landslide disasters with significant causality that overcomes the annual drowned causality of flood disasters. Consequently, the total death toll of South Korea landslide disasters including unexpected Mt. Woo-Myun disaster and Chuncheon disaster in 2011 became forty-three persons. The hugh amount of disaster management budget was spent in landslide mitigation and recovery projects of the affected areas. This research performed facility field research and resident surveys for landslide damage conditions and damage factors for Mt. Woo-Myun, Chuncheon, Pusan, and Dongdoochon that were major effect cities of 2011 landslide disasters.

Future Inundation Risk Evaluation of Farmland in the Moohan Stream Watershed Based on CMIP5 and CMIP6 GCMs (CMIP5 및 CMIP6 GCM 기반 무한천 유역 농경지 미래 침수 위험도 분석)

  • Jun, Sang Min;Hwang, Soonho;Kim, Jihye;Kwak, Jihye;Kim, Kyeung;Lee, Hyun Ji;Kim, Seokhyeon;Cho, Jaepil;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.131-142
    • /
    • 2020
  • The objective of this study was to evaluate future inundation risk of farmland according to the application of coupled model intercomparison project phase 5 (CMIP5) and coupled model intercomparison project phase 6 (CMIP6). In this study, future weather data based on CMIP5 and CMIP6 general circulation model (GCM) were collected, and inundation was simulated using the river modeling system for small agricultural watershed (RMS) and GATE2018 in the Tanjung district of the Moohan stream watershed. Although the average probable rainfall of CMIP5 and CMIP6 did not show significant differences as a result of calculating the probability rainfall, the difference between the minimum and maximum values was significantly larger in CMIP6. The results of the flood discharge calculation and the inundation risk assessment showed similar to trends to those of probability rainfall calculations. The risk of inundation in the future period was found to increase in all sub-watersheds, and the risk of inundation has been analyzed to increase significantly, especially if CMIP6 data are used. Therefore, it is necessary to consider climate change effects by utilizing CMIP6-based future weather data when designing and reinforcing water structures in agricultural areas in the future. The results of this study are expected to be used as basic data for utilizing CMIP6-based future weather data.

Reliability evaluations of time of concentration using artificial neural network model -focusing on Oncheoncheon basin- (인공신경망 모형을 이용한 도달시간의 신뢰성 평가 -온천천 유역을 대상으로-)

  • Yoon, Euihyeok;Park, Jongbin;Lee, Jaehyuk;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • For the stream management, time of concentration is one of the important factors. In particular, as the requirement about various application of the stream increased, accuracy assessment of concentration time in the stream as waterfront area is extremely important for securing evacuation at the flood. the past studies for the assessment of concentration time, however, were only performed on the single hydrological event in the complex basin of natural streams. The development of a assessment methods for the concentration time on the complex hydrological event in a single watershed of urban streams is insufficient. Therefore, we estimated the concentration time using the rainfall- runoff data for the past 10 years (2006~2015) for the Oncheon stream, the representative stream of the Busan, where frequent flood were taken place by heavy rains, in addition, reviewed the reliability using artificial neural network method based on Matlab. We classified a total of 254 rainfalls events based on over unrained 12 hours. Based on the classification, we estimated 6 parameters (total precipitation, total runoff, peak precipitation/ total precipitation, lag time, time of concentration) to utilize for the training and validation of artificial neural network model. Consequently, correlation of the parameter, which was utilized for the training and the input parameter for the predict and verification were 0.807 and 0.728, respectively. Based on the results, we predict that it can be utilized to estimate concentration time and analyze reliability of urban stream.

A Numerical Study on the Selection of Main Specification of the 18.5ft Bass Fishing Boat (18.5ft급 경기용 배스보트의 주요제원 선정에 관한 수치해석 연구)

  • Lim, Jun-Taek;Seo, Kwang-Cheol;Park, Geun-Hong;Kim, Sang-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.945-952
    • /
    • 2018
  • Recently, bass fishing has become a marine leisure sport in Korea. There are 4 major fishing associations in Korea, and each association holds 10-15 tournaments each year. However, supply of 17 ft bass boats, which are preferred in leagues, depends 100 % on imports. In this study, we have derived the main specifications to develop the initial hull forms of a 18.5ft bass boat through statistical analysis based on mothership data. In addition, CFD numerical analysis was carried out according to deadrise angle and longitudinal center of gravity, which strongly influenced the resistance and planing performance. For numerical analysis, design speed was set to $Fn=3.284 (Re=9.858{\times}10^7)$, the deadrise angle was set from 12 to $20^{\circ}$, and the longitudinal center of gravity was set in the range of 0 to $8%L_{wL}$ from the center of buoyancy to the stern. Based on the numerical results, we first set the range of these factors by resistance performance and immersion keel length. Furthermore, using a correlation graph of Savitsky's Drag-Lift ratio, we derived the deadrise angle ($14-16^{\circ}$) and longitudinal center of gravity ($4-6%L_{wL}$).

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.

Role of unstructured data on water surface elevation prediction with LSTM: case study on Jamsu Bridge, Korea (LSTM 기법을 활용한 수위 예측 알고리즘 개발 시 비정형자료의 역할에 관한 연구: 잠수교 사례)

  • Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Seung Oh
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1195-1204
    • /
    • 2021
  • Recently, local torrential rain have become more frequent and severe due to abnormal climate conditions, causing a surge in human and properties damage including infrastructures along the river. In this study, water surface elevation prediction algorithm was developed using the LSTM (Long Short-term Memory) technique specialized for time series data among Machine Learning to estimate and prevent flooding of the facilities. The study area is Jamsu Bridge, the study period is 6 years (2015~2020) of June, July and August and the water surface elevation of the Jamsu Bridge after 3 hours was predicted. Input data set is composed of the water surface elevation of Jamsu Bridge (EL.m), the amount of discharge from Paldang Dam (m3/s), the tide level of Ganghwa Bridge (cm) and the number of tweets in Seoul. Complementary data were constructed by using not only structured data mainly used in precedent research but also unstructured data constructed through wordcloud, and the role of unstructured data was presented through comparison and analysis of whether or not unstructured data was used. When predicting the water surface elevation of the Jamsu Bridge, the accuracy of prediction was improved and realized that complementary data could be conservative alerts to reduce casualties. In this study, it was concluded that the use of complementary data was relatively effective in providing the user's safety and convenience of riverside infrastructure. In the future, more accurate water surface elevation prediction would be expected through the addition of types of unstructured data or detailed pre-processing of input data.

Evaluation of Rheological Properties and Acceptance Criteria of Solidifying Agents for Radioactive Waste Disposal Using Waste Concrete Powder (폐콘크리트를 재활용한 방사성 폐기물용 고화제의 레올로지 특성 및 인수기준 특성평가)

  • Seo, Eun-A;Kim, Do-Gyeum;Lee, Ho-Jea
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.276-284
    • /
    • 2022
  • In this study, performance evaluation and rheological characteristics were analyzed for recycling the fine powder of nuclear power plant dismantled waste concrete as a solidifying agent for radioactive waste disposal. The radioactive concrete fine powder was used to prepare a simulated sample, and the test specimen was prepared using Di-water, CoCl2, and 1 mol CsCl aqueous solution as mixing water. Regardless of the aggregate mixing ratio and the type of mixing water, it satisfies the performance standard of 3.45 MPa for compressive strength at 28 days of age. All specimens satisfied the criteria for submersion strength, and the thermal cycle compressive strength satisfies the criteria for all specimens except Plain-50. As a result of evaluating the rheological properties of the solidifying agent, it was found that the increase in the aggregate mixing rate decreased the yield stress and plastic viscosity. The leaching index for cobalt and cesium of all specimens was 6 or higher, which satisfies the standard. In order to secure the stable performance of the solidifying agent, it is considered effective to use 40 % or less of the aggregate component in the solidifying agent.

Characteristics of the Species Composition by Plant Community in the Shincheon Wetland of Mangyeong River, Jeonbuk (만경강 신천습지의 식물군락별 종조성적 특성)

  • Kwang-Jin, Cho;Jung-A, Lee;Jeoncheol, Lim;Yeounsu, Chu
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.409-422
    • /
    • 2022
  • Riverine wetlands are an important element of the river ecosystem and account for approximately 38% of the inland wetlands surveyed so far. The Shincheon Wetland located in Mangyeong River is also a channel wetland as the flow rate is slowed by the constructed weirs, leading to sediment accumulation. To identify the conservation value and ecological characteristics of Shincheon Wetland, its vegetation and plant diversity were identified using a phytosociological method, and a total of 45 vegetation-related datasets were collected. Overall, 24 plant communities, comprising a total of 153 taxa (49 families, 117 genera, 146 species, 2 subspecies, 5 varieties) were identified. The plant with the highest appearance rate in the communities was Humulus japonicus Siebold & Zucc. In addition, annual herb species, including Rumex crispus L., Bromusjaponicus Thunb., Erigeron annuus (L.) Pers., and Artemisia indica Willd. were frequently observed to be growing in the secondary grassland. Naturalized plants were surveyed in the 38 taxa; the urbanization index was 10.3% and the naturalized index was 24.8%. Plant communities were largely classified into submerged vegetation, floating and floating-leaved vegetation, annual and biennial vegetation, perennial herb vegetation, and woody vegetation. The distribution of plant communities reflecting various habitats, including the lentic and lotic zone maintaining a constant water depth, littoral zone experiencing intermittent water level fluctuations, and dry floodplain environment was also confirmed. Overall, plant community development plays an important role in the habitat for wild animals; therefore, it is expected to positively impact biodiversity enhancement.

Effects of Salix subfragilis communities on water quality in Namgang Dam reservoir (남강댐 선버들 군락이 수질에 미치는 영향)

  • Kim, Ki Heung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1065-1076
    • /
    • 2022
  • The purpose of this study was to investigate the effect of the expansion and withering of Salix subfragilis communities on the water quality in Namgang Dam reservoir. The distribution area of the Salix subfragilis communities was 0.12 km2 in 2003 for the first time, but it was 3.58 km2 in 2019, which has increased rapidly by about 30 times in 16 years. However, in 2013, the distribution area has decreased by 0.17 km2 due to long-term immersion in high turbidity, and self-thinning in Salix subfragilis communities. The lake characteristics of reservoir showed a combination of lake type and river type in terms of average water depth, watershed area/lake surface area ratio, water residence time, flushing rate, and stratification. From the result of analyzing long-term changes in lake water quality, COD, TP, and chlorophyll-a in Salix subfragilis communities were significantly larger than those in the three points located in the central part of reservoir. In particular, the fact that the value of chlorophyll-a showed the maximum value in winter rather than summer, unlike the trend of the three points in the Namgang Dam water quality monitoring network, is thought to have occurred internally rather than externally. It can be estimated that one cause of this deterioration of the water quality in Namgang Dam reservoir is the huge amount of nutrients generated in the decomposition process of by-products such as fallen leaves, branches and withered trees in Salix subfragilis communities.

Modeling of Dam collapse using PMF and MCE conditions (PMF 및 MCE조건을 적용한 댐 붕괴 모델링)

  • Lee, Dong Hyeok;Jun, Kye Won;Lee, Byung Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.368-368
    • /
    • 2020
  • 최근 초대형화 되어 나타나고 있는 이상홍수와 지진 등에 의한 저수지 붕괴와 같은 대규모 비상상황 발생으로 하류지역 주민의 생명과 재산의 피해가 발생하고 있다. 국내의 경우 1996년 이후로 지속적으로 발생하고 있는 이상홍수로 인해 1998년에는 40개,1999년에는 5개의 소규모 저수지가 붕괴되었으며 최근 2013년과 2014년에도 저수지가 붕괴되는 상황이 발생했다. 댐붕괴의 원인은 구조물의 자연적 노화, 극심한 강우나 홍수, 지진, 제체전도, 파이핑, 침윤발생, 월류 및 파랑 등에 의한 자연적 상황 등이 요인이 될 수 있으며, 시공결함, 사고 또는 전쟁과 같은 인위적인 요인으로 발생할 수도 있다. 과거에 설계 및 시공기술이 부족하였거나 경제적인 이유로 부실하게 건설되어 있는 댐이 세계적으로 산재되어 있어 잠재적인 위험을 상당수 내재하고 있는 실정이다. 본연구는 댐의 점진적인 파괴에 의해 발생하는 유출수문곡선을 구하고 파괴의 성질을 예측 및 홍수파를 수리학적으로 추적하기위해 BREACH 모형과 DAMBRK 모형을 사용했으며 극한홍수(PMF)조건과와 최대지진발생(MCE)조건을 적용하여 원주시 관내 저수지 붕괴 모의 시나리오를 구축했다. 저수지 붕괴에 따른 유출수문곡선을 유도하기 위해서 본 연구에서는 기존의 EAP보고서 자료를 참고하여 붕괴지속시간, 붕괴부 평균폭, 붕괴부 측벽면 경사의 변화에 따라 다양한 모의를 수행함으로써 발생되는 붕괴부 유량 수문곡선을 도출하여 각각의 조건들이 붕괴파 형성에 미치는 영향에 대한 분석을 실시하였다. 그 결과 저수지의 붕괴시 첨두유출량에 민감한 영향을 주는 인자는 붕괴지속시간과, 붕괴부 평균폭으로서 이들 값이 붕괴유출량 변화에 많은 영향을 주는 것으로 나타났다. 최대지진발생(MCE)조건 해석결과 홍수류의 범람으로 인해 홍수파가 하류측으로 진행할수록 완만히 감소하며, 하천 중·상류부 인근 제내지로 홍수류의 범람이 발생하는 것으로 검토되었으며, 극한홍수(PMF)조건 해석결과 최대지진발생(MCE)조건과 같이 홍수파가 하류측으로 진행할수록 완만히 감소하는 특성을 보이며, 하천 전체 구간에서 인근제내지로 홍수류의 범람이 발생하는 것으로 검토되었다. 본 연구는 침수구역 피해규모 산정 및 비상대처계획도를 작성시 기초데이터가 되어 상황별 피해예상지역에 대해 응급행동요령, 주민대피계획비상대처계획을 수립하여 지역 주민생활에 안정을 기여하고자 한다.

  • PDF