• Title/Summary/Keyword: 친수성 막

Search Result 231, Processing Time 0.016 seconds

Pervaporation Separation of Ethanol Aqueous Solution through Carbonate-type Polyurethane Membrane II. The Effect of Pendent Anionic Group (카보네이트형 폴리우레탄막을 이용한 에탄올 수용액의 투과증발분리 II. 음이온성기에 의한 영향)

  • Han, In Ki;Oh, Boo Keum;Lee, Young Moo;Noh, Si Tae
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.595-604
    • /
    • 1992
  • Carbonate-type polyurethane resins containing anionic moieties were systhesized from NCO-terminated prepolymer method. Membranes were manufactured from the polymer solution and the separation of aqueous ethanol solution was investigated. To enhance the property of urethane resin, carbonate-type polyol(PTMCG) was used. ${\alpha}^{\prime},{\alpha}^{{\prime}{\prime}}$-dimethylolpropionic acid was used as a chain extender to increase the hydrophilicily of the urethane membrane. The ionization of the pendent carboxylic groups in urethane resin was carried out using trimthylamine. To confirm the formation of anionic groups in urethane resin, IR spectra of model compounds were compared with those of urethane resins. It was confirmed that the concentration of hard segment and hydrogen bond contributed to the property of the concentration of hard segment and hydrogen bond contributed to the property of urethane resin in which the mole ratio of chain extender and polyol was from 3:1 to urethane resin in which the mole ratio of chain extender and polyol was from 3:1 to 5:1. The carbonate-type polyurethane containing pendent carboxylic grop(PU) had Tg of around-$25^{\circ}C$ and Tm, $45^{\circ}C$ measured by DSC. Transition temperatures of one containing pendent anionic group(APU) prepared from the ionization of PU shifted to $8{\sim}10^{\circ}C$ lower temperature region than those of PU. Pervaporation membrane was prepared through the casting method. N, N-dimethylformamide (DMF) were used as a solvent and hexamethylene diisocyanate(HMDl) as a crosslinking agent. Swelling degree increased with ethanol concentration in mixure and the control of the swelling degree of the membrane could be achieved by crossliking. The results of pervaporation were as follows : separation factor, 2.3~9.8 ; flux, $27{\sim}79.5g/m^2hr$. Pervaporation separation capacity could be enhanced by reducing the molecular weight of polyol from 2,000 to 1,000.

  • PDF