• Title/Summary/Keyword: 친수성 막

Search Result 231, Processing Time 0.03 seconds

Preparation and Characterization of Proton Conducting Crosslinked Membranes Based On Poly(vinyl chloride) Graft Copolymer (Poly(vinyl chloride) 가지형 공중합체를 이용한 수소이온 전도성 가교형 전해질막의 제조와 분석)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Choi, Jin-Kyu;Park, Jung-Tae;Koh, Joo-Hwan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • A graft copolymer consisting of poly(vinyl chloride) (PVC) backbone and poly(hydroxyethyl acrylate) (PHEA) side chains was synthesized via atom transfer radical polymerization (ATRP). Direct initiation of the secondary chlorines of PVC facilitates grafting of hydrophilic PHEA monomer. This graft copolymer, i.e. PVC-g-PHEA was cross-linked with sulfosuccinic acid (SA) via the esterification reaction between -OH of the graft copolymer and -COOH of SA, as confirmed by FT-IR spectroscopy. Ion exchange capacity (IEC) continuously increased to 0.87meq/g with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0wt% of SA concentration above which it decreased monotonically. The membrane also exhibited a maximum proton conductivity of 0.025 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

Investigation of Water Channel Formation in Sufonated Polyimides Via Mesoscale Simulation (메조스케일 전산모사를 통한 술폰화 폴리이미드의 수화채널 형성 연구)

  • Park, Chi Hoon;Lee, So Young;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.389-398
    • /
    • 2017
  • The most important characteristic of the polymer electrolyte membranes (PEMs) for fuel cells, the proton conducting ability is mainly influenced by the distribution and morphology of the water channels inside the PEMs. Non-perfluorinated hydrocarbon PEMs are known to have weaker water channels than perfluorinated PEM, Nafion, and thus relatively low proton conducting ability. In this study, we used a mesoscale simulation technique to observe the water channel formation and phase separation behavior of hydrocarbon PEM, sulfonated polyimides, under the humidification condition. It was observed that the water molecules were distributed evenly through the entire hydrophilic region, and clear water clusters were formed only in the sulfonated polyimide having high sulfonation degree. In addition, it was observed that sulfonated polyimides have a difficulty in forming water channel under the low hydrated condition. These results clearly support the theories of the formation of water channels in non-perfluorinated hydrocarbon PEMs, and also well explain the tendency of proton conducting abilities of sulfonated polyimides. Thus, it is confirmed that mesoscale simulation techniques can be very effective in analyzing phase separation behavior and water channel formation in PEMs for fuel cells and elucidating the ion conducting abilities.

The Removal of Organics and Nutrients in an Anoxic/Oxic Process Using Surface-modified Media (표면개질 담체를 이용만 무산소/호기 공정에서의 유기물 및 영양염류 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • Surface of hydrophobic media was modified to become hydrophilic by ion beam irradiation. Fixed bed biofilm reactors packed with or without surface modification were used to remove organics, nitrogen, and phosphorus from sewage. This system composed of anoxic/oxic cycles to increase the nutrient removal. A cylindrical polyethylene was used as a packing media in this study. With 12 hours of hydraulic retention time (HRT), the reactors with and without surface modification showed 95% and 92% $COD_{cr}$ removal, respectively. Both reactors showed over 95% $COD_{cr}$ removals for a longer HRT of 16 hours. Nitrogen removal ranged 54.8% to 70.2% for the surface modified system and 57.5% to 76.5% for the non-modified system under same condition. Finally, phosphorus removal ranged 59.4% to 69.8% for the surface modified system and 51.3% to 63.4% for the non-modified system under same condition. From this study organics and phosphorus were better removed in using surface modified media and vice versa for nitrogen removal.

Development of harmful algae collecting system for agricultural material recycling (농업재료 자원화를 위한 유해조류 포집 시스템 개발)

  • Kim, J.H.;Kim, J.M.;Jeong, Y. W.;Kwack, Y.K.;Sim, S.K.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.50-50
    • /
    • 2022
  • 한국농어촌공사 산하의 농업용저수지 중 3786개소에 대한 수질조사를 '19년도에 실시한 결과, TOC 기준 4등급 초과 저수지 비율은 약 20%로써, 도심 근교 저수지에서 녹조현상 빈발로 인해 수질, 악취, 미관 등의 환경문제 개선 민원이 다수 발생하고 있다. 현재 녹조 발생 사후관리를 위해 주로 사용되고 있는 대형 조류제거선은 저수심 수변부에서의 적용성에 한계가 있고, Al 기반의 응집제를 사용하여 조류를 수거해서 폐기하고 있는 실정이다. (주)이엔이티는 농어촌연구원, (주)코레드, (주)삼호인넷과 함께 호소나 정체하천의 수변지역에 적용될 수 있는 저에너지형 유해조류 포집시스템 개발과, 수거된 조류부산물을 무독화하여 농업재료로 재활용하는 방안을 연구하고 있다. 저수지나 정체수역의 녹조는 바람, 수면유동 등에 의해 수변에 집적되는 특성이 있어, 인공지능 기술로 녹조현상을 감시하여 조류 밀집구간에 접근할 수 있는 자율이동식 수상이동장치를 개발 중이다. 수상이동장치는 조류포집장치를 탑재하기 위한 부력체, 원격 운전이 가능한 무인항법장치, 수변식생대 및 저수심지역 이동을 고려한 수차방식 추진체, 전체 장치의 전원 공급을 위한 고성능 배터리 등으로 구성하여 상세 도면 설계를 진행하고 있다. 조류포집장치에는 표층에 주로 분포하는 남조류를 선택 흡입하는 포집 부표를 적용하였고, Al계 응집제 사용을 배제한 분리막 실험을 통해 침지형 막분리조 및 가압형 농축조를 설계하였다. 유해조류 포집 및 농축은 수상에서 이동체에 탑재하여 이뤄지고, 육상에서는 자원 회수가 가능하도록 회분식 응집공정으로 구분하였다. 조류 밀집지역에서 수거된 조류의 무독화 및 농업재료 자원화 타당성 평가를 위해 특용 버섯균주를 활용한 시료별 분석항목을 선정하고 실험 매트릭스에 따라 실증실험을 수행하였다. 수거조류를 전처리하여 성분 및 발열량을 분석하고 버섯재배 전후의 마이크로시스틴 독소(LR, RR, LR)를 포함한 성분 분석을 수행하여, 고체연료, 비료 및 사료로 활용방안을 검토하였다. 무인자율이동 조류포집장치는 실증화 규모로 제작하여 기선정된 테스트베드에서 현장적용성 평가를 수행할 예정이다. 본 연구를 통해 개발된 유해조류 포집 시스템은 기존의 녹조제거 방안을 보완하여 정체수역의 생태계 복원 및 친수공간의 환경개선 등에 적용되며, 무독화가 입증된 유해조류의 농업재료 자원화 기술은 고부가 상품 개발 및 환경폐기물 감축에 활용될 것이다.

  • PDF

Detailed patterning formation through Etch resist printing condition reservation (부식 방지막 인쇄 조건 확보를 통한 미세 배선 형성)

  • Lee, Ro-Woon;Park, Jae-Chan;Kim, Yong-Sik;Kim, Tae-Gu;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.179-179
    • /
    • 2006
  • 산업기술의 고도화에 따른 IT 산업의 급속한 발전으로 각종 전자, 정보통신기기에 대해 더욱 소형화 고성능화를 요구하고 있다. 이와 같은 경향에 따라 더욱 향상된 기능을 가지고 각종 소자 부품의 개발과 동시에 유독 물질 발생이 없는 청정생산기술 개발에 대한 요구가 끊임없이 제기 되어 왔다. 이러한 요구에 부응하여 기술들이 개발되고 있으며 그 중의 하나로 잉크젯 프린팅 기술이 연구되고 있다. 특히 Dod(Drop on Demand) 방식의 잉크젯은 가정용 프린터로 개발되어 널리 보급된 기술이지만, 이 기술을 PCB 제조기술에 전용하면 친환경 생산공정으로 부품 성장밀도를 증대 시킬 수 있다. 기존의 PCB 제조기술은 전극과 신호 패턴을 형성시키기 위하여 노광공정과 에칭공정을 반복적으로 사용하고 있는데, 노광공정에서 쓰이는 마스크와 유틸리티 설비 유지 비용의 문제가 대두되고 있다. 노즐로부터 분사된 잉크 액적들의 집합으로 기판위에 점/선/면의 인쇄이미지를 구현하게 된다. 그러므로 인쇄 해상도는 잉크액적 및 인쇄 방법, 기판과의 상호작용에 크게 의존하게 된다. 잉크 액적과 기판의 상호작용에 영향을 미치는 요소로는 잉크의 물리화학적 물성(밀도, 점도, 표면장력), 잉크 액적의 충돌 조건(액적 지름, 부피, 속도), 그리고 기판의 특성(친수/소수성, Porous/Nonporous, 표면조도 등)을 들 수 있겠다. 우선적으로 노즐을 통과해서 분사되는 액적의 크기에 따라 기판위에 형성되는 라인의 두께 및 폭이 결정된다. 떨어진 액적이 기판위에서 퍼지는 것을 UV 조사를 통한 가경화 과정을 통해서 최종적으로 라인의 투께 및 폭을 조절하려고 한다. 따라서 선폭 $75{\mu}m$의 일정한 미세 배선을 형성시키기 위해 액적 크기 조절과 탄착 resist 액적 표면의 UV 가경화 조건으로 구현하려고 한다. 또한 DPI(Dot Per Inch) 조절을 통한 인쇄로 탄착 resist의 두께 확보 후 에칭시 박리되는 현상을 억제 시키려 한다.

  • PDF

The Removal of Organics and Nitrogen with Step Feed Ratio Change into the Anoxic and Anaerobic reactor in Advanced Sewage Treatment process Using Nonsurface-modified and Surface-modified Media Biofilm (비개질/개질 생물막을 이용한 오수고도처리공정에서 혐기조와 무산소조의 원수 분배율에 따른 유기물 및 질소 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2005
  • This study was accomplished using attached $A^2/O$ process that contains nonsurface-modified and surface-modified polyethylene media inside the Anaerobic/Anoxic, Oxic tank, respectively. We could make the hydrophobic polyethylene media have hydrophilic characteristics by radiating ion beam on the surface of the media. The objectives of this study is to investigate the removal efficiencies of the organics and nitrogen when the step feed ratio of raw wastewater into anaerobic and anoxic tank is changed. In this case, we assumed that the denitrification rate can be improved because the nitrifiers in anoxic tank can perform denitrification using RBDCOD instead of artificial carbon sources (for example, methanol, etc.). The wastewater injection rate into anaerobic/anoxic tank was set up by the ratio of 10 : 0, 9 : 1, 8 : 2, 6 : 4, and the results of BOD removal efficiency showed similar trends with $93.3\%,\;92.6\%,\;92.4\%\;and\;91.6\%$, respectively. But the BOD removal efficiency (utilization of the organics) in the anoxic tank was in the order of 9 : 1 $(84.8\%)$, 10 : 0 $(77.0\%)$, 8 : 2 $(75.3\%)$, and 6 : 4 $(61.1\%)$. The T-N removal efficiency was most high when the ratio is 9 : 1 $(67.4\%)$, and other conditions, 10 : 0, 8 : 2, 6 : 4, showed $61.3(\%),\;60.7\%,\;55.5\%$, respectively; the ratio 6 : 4 was found to be lowest T-N removal efficiency, lower than the ratio 9 : 1 by $12\%$. Though the nitrification rate of the ratio 10 : 0, 9 : 1, and 8 : 2 showed similar levels, the ratio 6 : 4 showed considerable inhibition of nitrification, ammonia was the great portion of the effluent T-N. The advantages of this process is that this process is cost-saving, and non-toxic methods than injecting the artificial carbon source.

Development of Antibacterial Hood and Filter for Medical Powered Air Purifying Respirators (PAPR) (의료용 전동공기청정호흡기(PAPR)용 항균성 후드 및 필터 개발)

  • Eunjoo Koh;Nahyun Cho;Yong Taek Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.398-408
    • /
    • 2023
  • This work developed a hood and filter for antibacterial protective clothing for medical powered air purifying respirators (PAPR) that can be used in medical settings and quarantine against infectious diseases such as Zika virus, Middle East respiratory syndrome (MERS), and coronavirus disease-19 (COVID-19). The hood material of the protective clothing was made of polypropylene spunlace nonwoven fabric (SFS) was used for withstand wind pressure and external physcial pressure. Forthermore, in order to reduce the user's risk of infection, phytoncide-based materials were used on the outer-surface of the hood to achieve a 99.9% antibacterial effect, and the inner-surface were treated with hydro-philic materials to improve absorbency by 25%. In addition to evaluating the artificial blood penetration resistance, dry mi-croorganism penetration resistance, wet bacteria penetration resistance, and bacteriophage penetration resistance required for medical protective clothing hoods, it received a passing evaluation of levels 2-6. Meanwhile, as a result of evaluating the performance of the antibacterial treated spunlace high efficiency particulate air (HEPA) filter, excellent antibacterial properties, dust removal rate, and differential pressure effect were confirmed. All performance evaluations were conducted by an accredited certification body in accordance with the medical PAPR certification standards.

Enhancement of the solubility of human tissue inhibitor of matrix metallocroteinase-2 (TIMP-2) in E. coli using a modified in vitro mutagenesis (새로운 유전자 재조합 방법을 이용한 대장균에서의 인간 tissue inhibitor of mtrix metalloproteinase-2 (TIMP-2) 유전자의 가용성 발현)

  • Kim, Jong-Uk;Choi, Dong-Soon;Joo, Hyun;Min, Churl-K.
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • The second family member of tissue inhibitors of matrix metalloproteinases, TIMP-2, is a 21kDa protein which inhibits matrix metalloproteinases 2 (MMP-2). Expression of mammalian proteins in E. coli often forms inclusion bodies that are made up of mis-folded or insoluble protein aggregates. The requirement for the formation of 6 disulfide bonds in the process of the TIMP-2 folding is likely to be incompatible with the reducing environment of E. coli. However, this incompatibility can be often overcome by introducing a mutagenesis that could lead to enhancement of the protein solubility. In this reason, we have attempted to express the soluble TIMP-2 in E. coli by applying a modified staggered extension process (StEP), one of the in vitro PCR-based recombinant mutagenesis methods, and error-prone PCR. C-terminally located CAT fusion protein with respect to mutated TIMP-2 proteins enables us to differentiate the soluble TIMP-2 from the insoluble in E. coli by virtue of chloramphenicol resistance. According to this scheme, E. coli harboring properly-folded CAT fused to TIMP-2 protein was selected, and some of the resulting colonies exhibited an enhanced, soluble expression of TIMP-2 compared to the wild type, implying (i) the StEP technique is successfully employed to enhance the proper folding thereby increasing the solubility of TIMP-2, and (ii) the CAT dependent screening may be a simple and effective method to differentiate the soluble protein expression in E. coli.

Multiple Binding Affinities for Muscarinic Acetylcholine Receptors in Rat Brain (흰쥐 뇌내(腦內)의 무수카린성 콜린 수용체의 이질성(異質性))

  • Lee, Jong-Hwa;El-Fakahany, Esam E.
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.101-111
    • /
    • 1987
  • We investigated the binding properties of $(^3H)$ QNB and $(^3H)$ NMS to mAchR to elucidate the characterstics of mAchR in rat brain by using two different preparations (homogemates & intact brain cell aggregates). The binding properties of both ligands demonstrated high affinity and saturability in both experiments, however $(^3H)$ QNB showed a significantly higher maximal binding capacity than tha ot $(^3H)$ NMS 1. In rat brain homogenates; Displacement of both lignands with several mAchR antagonists resulted in competition curves in accoradnce with the law of massaction for QNB, atropine & scopolamine in thie preparation, also a similar profile was found for the quaternary ammonium analogs of atropine & scopolamine (methyl atropine & methylscopolamine) when $(^3H)$ NMS was used to label the receptors in rat brain. But when these hydrophillic antagonists were used to displace $(^3H)$ QNB, they showed interaction with high- and low-affinity binding sites in brain homogenates. Pirenzepine, the nonclassical mAchR antagonist, was able to displace both ligands from binding sites in this preparation. 2. In intact rat brain cell aggregates; Intact bain cell aggregates were used to elucidate the binding characteristics of $(^3H)$ NMS to mAchR in rat. The magnitude of binding of this ligand was related linearly to the amount of cell protein in the binding assay with a high ratio of total to nonspecific binding. mAchR antagonists displaced specific $(^3H)$ NMS binding according to the law of mass-action, while it was possible to resolve displacement curves using mAchR agonist into high-& low-affinity component. 3. Our results indicate that more hydrophilic receptor ligand $(^3H)$ QNB, displacement experiments in both tissues demonstrated that the lipid solubility of a particulr mAchR ligand might play an important role in determining its profile of binding to the mAchR, and the concentrations of mAchR in rat brain are both on the cell surface (membrane-bound receptor) and in the intracelluar membrane (intermembrane-bound receptor). 4. The results are discussed in terms of the usefulness of dissociated intact rat brain cells in studying mAchR in central nervous system.

  • PDF

SOI wafer formation by ion-cut process and its characterization (Ion-cut에 의한 SOI웨이퍼 제조 및 특성조사)

  • Woo H-J;Choi H-W;Bae Y-H;Choi W-B
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • The silicon-on-insulator (SOI) wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by SRIM simulation that 65keV proton implantation is required for a SOI wafer (200nm SOI, 400nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the $6\~9\times10^{16}\;H^+/cm^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. Direct wafer bonding is performed by joining two wafers together after creating hydrophilic surfaces by a modified RCA cleaning, and IR inspection is followed to ensure a void free bonding. The wafer splitting was accomplished by annealing at the predetermined optimum condition, and high temperature annealing was then performed at $1,100^{\circ}C$ for 60 minutes to stabilize the bonding interface. TEM observation revealed no detectable defect at the SOI structure, and the interface trap charge density at the upper interface of the BOX was measured to be low enough to keep 'thermal' quality.