• 제목/요약/키워드: 친수성표면

Search Result 439, Processing Time 0.023 seconds

Recent Progress in Patterned Membranes for Membrane-Based Separation Process (분리공정을 위한 패턴화 멤브레인 최근 연구 동향)

  • Aung, Hein Htet;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.170-183
    • /
    • 2021
  • Fouling has continued to be a problem that hinders the effectiveness of membrane properties. To solve this problem of reducing fouling effects on membrane surface properties, different and innovative types of membrane patterning has been proposed. This article reviews on the progress of patterned membranes and their separation process concerning the fouling effects of membranes. The types of separation processes that utilize the maximum effectiveness of the patterned membranes include nanofiltration (NF), reverse osmosis (RO), microfiltration (MF), ultrafiltration (UF), and pervaporation (PV). Using these separation processes have shown and prove to have a major effect on reducing fouling effects, and in addition, they also add beneficial properties to the patterned membranes. Each patterned membrane and their separation processes gave notable results in threshold towards flux, salt rejections, hydrophilicity and much more, but there are also some unsolved cases to be pointed out. In this review, the effects of patterned membrane for separation processes will be discussed.

Ceramic Based Photocatalytic Membrane for Wastewater Treatment: A Review (폐수처리를 위한 세라믹 기반 광촉매 분리막: 총설)

  • Kwak, Yeonsoo;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.181-190
    • /
    • 2022
  • Membrane separation provides various advantages including cost effectiveness and high efficiency over traditional wastewater treatment methods such as flocculation and adsorption. However, the effectiveness of membrane separation greatly declines due to membrane fouling, where pollutants are accumulated on the membrane surface. Among different groups of membranes, ceramic membranes can provide good antifouling properties due to its hydrophilicity and chemical stability. In addition, composite membranes such as graphene oxide modified membranes can help prevent membrane fouling. Recently, hybrid photocatalytic membranes have been proposed as a solution to prevent membrane fouling and provide synergetic effects. Membrane separation can solve the disadvantages of photocatalytic oxidation such as low reutilization rate, while photocatalytic oxidation can help reduce membrane fouling.

Microemulsions in Supercritical Carbon Dioxide Utilizing Nonionic Surfactants (초임계 이산화탄소내 비이온성 계면활성제를 이용한 마이크로에멀젼 형성연구)

  • Koh, Moonsung;Yoo, Jaeryong;Park, Kwangheon;Kim, Hongdoo;Kim, Hakwon
    • Clean Technology
    • /
    • v.10 no.4
    • /
    • pp.221-228
    • /
    • 2004
  • Ethoxylated Nonyl Phenol Series (NP-series), nonionic surfactants, were applied for forming microemulsions in supercritical $CO_2$. Measurement results of the solubility in supercritical $CO_2$ are in the following; NP-series were high soluble in carbon dioxide in spite of the fact that those were not $CO_2$-philic surfactants traditionally well known. Water in $CO_2$ microemulsions were also formed stably. A complexation of hydrophilic lengths for $CO_2$-philic parts of NP-Series surfactants was optimized by NP-4 surfactant(N=4) for forming the microemulsions through the experiments. Formation of microemulsions was confirmed by measuring the UV-Visible spectrum through a spectroscopic method and existence of water in the microemulsions was confirmed as well. In order to apply it for a metal surface treatment or electroplating, an experiment for forming acid(organic, inorganic) solution in $CO_2$ microemulsions was carried out. Ionic surfactant in the reaction to an acid solution became unstable to form microemulsions, however, nonionic surfactant was formed stably in the reaction. Results of the study will be utilized for expanding the application scope of supercritical $CO_2$ which is an environmental-friendly solvent.

  • PDF

Surface Modification of Proton Exchange Membrane by Introduction of Excessive Amount of Nanosized Silica (과량 실리카 도입을 통한 고분자 전해질막 표면 개질)

  • Park, Chi Hoon;Kim, Ho Sang;Lee, Young Moo
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • In this study, the silica nanoparticles were considerably chosen to improve a dimensional stability, proton transport and electrochemical performance of the resulting inorganic-organic nanocomposite membranes. For this purpose, hydrophobic silica (Aerosil$^{(R)}$ 812, Degussa) and hydrophilic silica (Aerosil$^{(R)}$ 380, Degussa) nanoparticles were, respectively, introduced into a Sulfonated poly(arylene ether sulfone) (SPAES) polymer matrix. The $SiO_2$ particles are evenly dispersed in a SPAES matrix by the aid of a non-ionic surfactant (Pluronics$^{(R)}$ L64). A $SiO_2$ content plays an important role in membrane microstructures and membrane properties such as proton conductivity and water uptake. Therefore, to study nanocomposite membranes with excessive amount of silica, the content of silica nanoparticles were increased up to 5 wt%. Interestingly, a hydrophobic $SiO_2$ containing nanocomposite membrane showed better electrochemical performance (29% higher than pristine SPAES) despite of low proton conductivity due to its adhesive properties with a catalyst layer in a single cell test. All the silica-SPAES membranes exhibited better performance than a pristine SPAES membrane.

Studies on the Gemini Type Amphipathic Surfactant(5) - Preparation and Properties of Double Chain Surfactant with Two Sulfonate Groups Derived from N-Acyldiethanolamines - (제미니형 양친매성 계면활성제에 관한 연구(제5보) - 함질소 장쇄아실디에탄올아민으로부터 유도된 두 개의 술폰산 염기를 갖는 화합물의 합성 및 계면특성 -)

  • Yun, Young-Kyun;Jeong, Hwan-Kyeong;Jeong, Noh-Hee;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.565-568
    • /
    • 1998
  • Amphipathic compounds (bis-sulfonate Gemini type) with double or triple long chain alkyl groups were prepared by the reaction of N-(long chain acyl)diethanolamine diglycidyl ethers with fatty alcohols, followed by the reaction with propanesultone. All these new Gemini type surfactants were soluble in water and showed much better micelle forming ability and lowering surface tension than sodium dodecyl sulfonate with one sulfonate group. cmc and ${\Upsilon}$ cmc values of the triple-chain compounds were still much smaller than those of the corresponding double-chain compounds with two common alkyl groups. The efficiency of adsorption at the water/air interface ($pC_{20}$) of these surfactants was very high. Their foaming properties, wetting ability toward a felt chip, and lime-soap dispersing requirement (LSDR) were measured. Their initial foaming properties were high but showed good low foam stability, wettability and LSDR.

  • PDF

A Study on the Change of the Adsorption Process of VOCs in the Materials Prepared from the Intercalation Reaction (층간 삽입반응으로 얻어진 화합물을 이용한 휘발성 유기화합물의 흡착과정 변화에 대한 연구)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.799-806
    • /
    • 2017
  • The potential use of modified clays in the adsorption of vapor phase benzene and toluene was investigated. The modified clays OC-CPC, IOC, and Al-PILC were prepared for comparative purposes and were characterized using infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. It was confirmed the intercalation of the aluminium pillar in IOC and Al-PILC, as well as the introduction of cetylpyridinium. The adsorption studies showed a great affinity of benzene and toluene for OC-CPC due to the hydrophobic character that resulted and also to the increase in the interlaminar distance. IOC showed a lower affinity for the benzene and toluene, followed by Al-PILC. Natual clay had no affinity for benzene and toluene due to its hydrophilic nature. Clay materials having a laminar structure can be chemically modified, changing their physiochemical characteristics, such as interlaminar distance, surface area, pore size, and chemical affinity. In this study, it was focused on obtaining modified clays to be used for the adsorption of volatile organic chemicals.

Analysis of breaching behavior of levee according to coating thickness of new substance (신소재의 피복두께에 따른 제방의 붕괴 거동 분석)

  • Ko, Dong Woo;Kim, Sung Joong;Kang, Joon Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.480-480
    • /
    • 2018
  • 전 세계적으로 자연 친화, 하천생태계 보전, 친수하천 등을 조성하기 위한 대대적인 하천 정비사업이 활발히 진행 중에 있다. 최근 홍수로 인한 제방 붕괴에 대응하기 위한 제방의 안정화 및 개선을 위한 방법으로 기존의 시멘트와 같은 혼합물질을 사용하지 않고 환경 친화적이고 지속 가능한 대안에 대한 수요가 증가되고 있는 추세이며 현재 노후화 된 불안정 제방에 대한 보강대책을 수립해나가는 과정으로써 친환경 신소재를 활용하여 제방을 보호하는 연구가 수행되고 있다. 제방사면에 적용되는 신소재는 바이오폴리머를 활용한 재료로써 공동연구기관 카이스트에서 개발된 환경 친화적인 물질로 미생물에 의해 유도된 고인장 및 인체 무해성 등의 특성을 갖고 있으며 경제적 타당성인 측면에서 시멘트와 비교 분석 되어야 하고 실제 현장에서의 적용 가능성, 신뢰성 및 내구성 검토 등 성능을 보장하기 위한 지속적인 연구가 필요한 상황이다. 이에 본 안동하천실험센터에서는 중규모 제방을 직접 제작하여 수리모형실험을 통한 친환경 신소재 활용 제방의 안정성 및 성능 평가를 실시하였다. 수리실험 조건은 카이스트에서 제시된 레시피를 기반으로 먼저 분말형태의 바이이폴리머를 물과 희석하여 만들어진 바이오폴리머 용액을 흙과 혼합한 뒤 제방표면에 직접 미장작업을 수행하여 실험조건에 따라 일정한 두께(1cm, 3cm, 5cm)로 피복하였다. 이후 월류 붕괴 실험이 가능한 3 - 5일 정도의 양생기간을 거쳐 실험을 진행하였다. 실험결과는 다수의 고프로(GoPro) 및 비디오 카메라 등 다양한 영상장치를 이용하여 픽셀기반의 영상분석기법을 활용한 시간 흐름에 따른 제방 사면에서의 붕괴규모를 산정하여 신소재의 피복 두께에 따른 제체의 붕괴 거동 및 안정성을 평가하였으며, 또한 제방 파괴부에서의 흐름 상황 및 유속이 붕괴 발달에 미치는 영향을 분석하기 위하여 PIV 분석을 실시하였다. 이번 연구의 최종목표는 지속적인 예비실험을 수행하여 월류 및 침투, 파이핑 등 파괴 인자 별 신소재의 성능 개선 및 개발된 새로운 공법에 대한 효과 검토를 통한 최적안을 도출함으로써 향후 실규모 실험실증을 통한 신소재 시공 및 공법에 대한 현장적용 가능성 검증을 거쳐 최종적으로 신소재 제방 공법 설계 기술, 신소재 및 공법 표준안, 제방공법 안정성 평가 가이드라인 등을 제시하고자 하며, 이러한 실험데이터를 축적함으로써 실제 제방 붕괴 시 비상대처계획 수립에 필요한 기초자료로 활용이 가능할 것으로 사료된다.

  • PDF

A Study on the High Content Ceramide Stabilization Formulation with Cyclodextrin (사이클로덱스트린을 함유한 고함량 세라마이드 안정화 제형 연구)

  • Ye Ji Kim;Sang Woo Han;So Min Lee;Byungsun Cha;Hyojin Heo;Sofia Brito;Lei Lei;Sang Hun Lee;You-Yeon Chun;Ha Hyeon Jo;Hyung Mook Kim;Byeong-Mun Kwak;Bum-Ho Bin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.97-106
    • /
    • 2023
  • In this study, we would like to study the stabilization of the high content of ceramide formulation by containing cyclodextrin. Ceramide, which constitutes the intercellular lipid, a human skin barrier, is a very important ingredient in moisturizing maintenance by protecting moisture in the skin and strengthening the skin barrier. However, since ceramide is poorly soluble, even if it is included in the cosmetic formulation, it has a problem that it is slowly gelled or crystallized and deposited over time, making it difficult to containing a high amount of ceramide. Cyclodextrin is a cyclic oligosaccharide connected with glucose molecules and has a cylindrical structure with hydrophilic outer surface and hydrophobic inner surface, which is known to improve the physicochemical properties of drugs such as improving solubility and absorption of poorly soluble drugs. We demonstrated the stability of the formulation containing high amount of ceramide by measuring hardness and observing emulsion drops with polarized microscope. This study also demonstrated that the high-content ceramide formulation containing cyclodextrin has the effect of preventing gelation or crystallization of ceramide, thus having excellent environmental conditions stability and skin moisturization.

Enhancement of Penetration by Using Mechenical Micro Needle in Textile Strain Sensor (텍스타일 스트레인 센서에 마이크로 니들을 이용한 전도성입자 침투력 향상)

  • Hayeong Yun;Wonjin Kim;Jooyong Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • Recently, interest in and demand for sensors that recognize physical activity and their products are increasing. In particular, the development of wearable materials that are flexible, stretchable, and able to detect the user's biological signals is drawing attention. In this study, an experiment was conducted to improve the dip-coating efficiency of a single-walled carbon nanotube dispersion solution after fine holes were made in a hydrophobic material with a micro needle. In this study, dip-coating was performed with a material that was not penetrated, and comparative analysis was performed. The electrical conductivity of the sensor was measured when the sensor was stretched using a strain universal testing machine (Dacell Co. Ltd., Seoul, Korea) and a multimeter (Keysight Technologies, Santa Rosa, CA, USA) was used to measure resistance. It was found that the electrical conductivity of a sensor that was subjected to needling was at least 16 times better than that of a sensor that was not. In addition, the gauge factor was excellent, relative to the initial resistance of the sensor, so good performance as a sensor could be confirmed. Here, the dip-coating efficiency of hydrophobic materials, which have superior physical properties to hydrophilic materials but are not suitable due to their high surface tension, can be adopted to more effectively detect body movements and manufacture sensors with excellent durability and usability.

Selectivity and Permeability Characteristics of Pure CO2 and N2 Gases through Plasma Treated Polystyrene Membrane (플라즈마 처리된 폴리스티렌 막을 통한 순수한 CO2 와 N2 기체의 선택·투과 특성)

  • Hwang, Yui-Dong;Shin, Hee-Yong;Kwak, Hyun;Bae, Seong-Youl
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.588-596
    • /
    • 2006
  • The surface of polystyrene membrane treated by Ar, $O_2$ plasma, and the effects were observed before and after the treatment and permeability of $CO_2$, $N_2$ and selectivity of $CO_2$ relative to $N_2$ was measured using continuous flow gas permeation analyzer (GPA). The mole ratio of O over C in the surface was increased from 0 to 0.179 with Ar plasma treatment and route mean square of surface was increased from $15.86{\AA}$ to $71.64{\AA}$. Therefore the contact angle was decreased from $89.16^{\circ}$ to $18.1^{\circ}$. Thus Plasma treatments made surface of membrane tend to be highly hydrophilic. The optimum condition for the $CO_2$ permeability and ideal selectivity of the plasma treated membrane was as follows: the measurement of Ar (60 W, 2 min, $70^{\circ}C$) plasma treatment was $1.14{\times}10^{-12}[m^3(STP){\cdot}m/m^2{\cdot}sec{\cdot}atm]$ and 4.22. In the case of $O_2$ plasma treatment, the contact angle was decreased at $13.56^{\circ}$ with increase of O/C ratio ($0.189{\AA}$) and route mean square of surface ($57.10{\AA}$). The optimum condition for the $CO_2$ permeability and ideal selectivity of the plasma treated membrane was as follows: the measurement of $O_2$ (90 W, 2 min, $70^{\circ}C$) plasma treatment was $7.1{\times}10^{-12}[m^3(STP){\cdot}m/m^2{\cdot}sec{\cdot}atm]$ and 11.5. After plasma treatment, the changes of membrane surface were all subtly linked with both cross-linking and etching effects. Finally, it was confirmed that the gas permeation capacity and selectivity of the modified membrane with plasma could be improved by an appropriate control of the plasma conditions such as treatment time, the power input and sort of plasma gas.