• Title/Summary/Keyword: 치환비율

Search Result 281, Processing Time 0.025 seconds

Research about Optimal Design of Artificial Recharge (지하수 인공함양 최적개발 연구)

  • Jung, Euntae;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.116-116
    • /
    • 2017
  • 지하수 인공함양은 수자원확보 및 비상시 용수를 목적으로 세계적으로 연구 및 프로젝트가 진행되고 있다. 인공함양의 방법에는 여러 가지의 방식이 있지만 본 연구는 관정을 통해 주입하는 ASTR(Aquifer Storage Transfer and Recovery)방법을 이용하여 연구하였다. ASTR이란 지표수를 인공적인 방법으로 대수층에 주입시키고, 일정기간 저장시키거나 유하시킨 후 양수하는 방법이다. 염수로 포화된 피압대수층에 담수를 주입하여 염수를 치환할 수 있는 주입-양수 시스템을 연구하였다. 염수로 포화된 대수층에서 인공함양기술을 성공시키기 위해서는 양수정으로 유입되는 염수비율이 0%을 만족하며, 주입으로 인한 수위상승량은 지반변형을 일으키지 않는 최소한의 값을 가지는 것이다. 본 연구는 앞서 언급한 인공함양기술을 성공시키기 위해 지하수 흐름모델과 최적화 모델을 결합한 최적전산모델을 이용하여 모의하였다. 지하수 흐름모델은 경계면모델을, 최적화 기법은 GA(Genetic Algorithm)을 이용하였다. 구축된 목적함수로는 양수정의 담수비율 최대화, 주입정에서의 수위상승량 최소화 그리고 양수개시시간 최소화로 구성하였다. 제약조건으로는 총 주입량 및 양수량 그리고 주입 및 양수정 개수이다. 서술한 목적함수와 제약조건을 만족하는 주입/양수정의 위치 및 유량을 최적전산모델로부터 얻을 수 있다. 기존 지하수 인공함양 및 개발은 사례별 연구 또는 전문가의 주관적 판단에 의존하는 경향이 있었다. 본 연구는 최적화 기법을 통해 복수의 관정에서 정량적인 산정이 가능하다. 현재 모델링에 의존한 연구로써 한계가 있지만, 추후 실제현장에 적용하여 모델 검정을 통해 신뢰도를 높이며 지하수 인공함양 개발에 많은 공헌을 할 수 있을 것으로 예상한다.

  • PDF

Status and Changes in Chemical Properties of Paddy Soil in Korea (우리나라 논토양의 화학성 현황과 변동)

  • Kang, Seong-Soo;Roh, Ahn-Sung;Choi, Seung-Chul;Kim, Young-Sang;Kim, Hyun-Ju;Choi, Moon-Tae;Ahn, Byung-Koo;Kim, Hyun-Woo;Kim, Hee-Kwon;Park, Jun-Hong;Lee, Young-Han;Yang, Sang-Ho;Ryu, Jong-Soo;Jang, Young-Sun;Kim, Myeong-Sook;Sonn, Yeon-Kyu;Lee, Chang-Hoon;Ha, Sang-Gun;Lee, Deok-Bae;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.968-972
    • /
    • 2012
  • Soil chemical properties of agricultural soils in Korea were investigated at four-years interval in order of paddy, plastic film house, upland, and orchard soils since 1999. Paddy soil samples were taken from the surface 15 cm at 4,047, 2,010, 2,110 and 2,110 sites in all provinces of South Korea in 1999, 2003, 2007 and 2010, respectively. Soil chemical properties in Korea except Jeju province were measured. Soil pH and exchangeable calcium and available silicate contents increased with increasing the application rate of silicate fertilizer and with decreasing its application interval. Soil organic matter content also increased from $22.0g\;kg^{-1}$ in 1999 to $26.0g\;kg^{-1}$ in 2011. Average concentration of available phosphate in 2011 was higher than the upper limit of its optimal range for rice cultivation. However, exchangeable magnesium and available silicate contents were below the lower limit of their optimal ranges, which were 80% and 92% of them, respectively.

Changes in Chemical Properties of Paddy Field Soils as Influenced by Regional Topography in Jeonbuk Province (지형특성에 따른 전북지역 논토양 화학성 변화)

  • Ahn, Byung-Koo;Lee, Jin-Ho;Kim, Kab-Cheol;Kim, Hyung-Gook;Jeong, Seong-Soo;Jeon, Hye-Won;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.393-398
    • /
    • 2012
  • We investigated the changes in chemical properties of paddy field soils at 300 different sampling sites containing 4 topography in Jeonbuk province, Korea. The soil samples were collected 43.0% from local valley and fans, 39.3% from fluvio-marine deposits, 15.0% from alluvial plains, and 2.7% from diluvium sites. The optimal values of soil properties in the total soil samples were as follows: 65.3% of total samples in soil pH value, 48.3% of total samples in cation exchange capacity (CEC) value, and 22.3% of total samples in available phosphorus content, whereas the deficient values of soil properties were 63.3% of total samples in soil organic matter (SOM) content, 75.7% of total samples in available silicate content, and 61.3%, 51.0%, and 59.3% of total samples in exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ concentrations, respectively. There were different soil types in the paddy fields: that is, 34.4% immature paddy and 33.6% sandy paddy in the local valley and fans, 57.8% sandy paddy in the alluvial plains, 47.4% normal paddy in the fluvio-marine deposits, and 75.7% immature paddy in the diluvium. Soil textures were also different: 53.5% loam in the local valley and fans, 37.8% sandy loam in the alluvial plains, and 55.1% silty loam in the fluvio-marine deposits. Soil pH and SOM contents were not different among the different topographical sampling sites. However, the mean value of available phosphorus content, 224 mg $kg^{-1}$, was exceeded optimal values in the diluvium. The contents of exchangeable cations were optimal in all the sites, except exchangeable $Ca^{2+}$ contents in the local valley and fans. The contents of available silicate ranged between 112 and 127 mg $kg^{-1}$ in all the sites, which were lower than optimal value. In addition, soil pH values were proportionally correlated to the order of available silicate, exchangeable $Ca^{2+}$, $Mg^{2+}$, $Na^+$, CEC, and exchangeable $K^+$. The contents of SOM were proportionally correlated to the order of CEC, available $P_2O_5$, exchangeable $Ca^{2+}$, and available silicate. The contents of heavy metals, Cd, Cr, Cu, Ni, Pb, and Zn, were only 10% of the threshold levels of the metals, and As content was about 20 to 30% of the threshold level.

Chemical Characteristics of Soils in Cheju Island I. Variations in Chemical Characteristics with Altitude (제주도(濟州道) 토양(土壤)의 화학적(化學的) 특성(特性) 조사연구(調査硏究) I. 지대별(地帶別) 화학적(化學的) 특성(特性) 변화(變化))

  • Yoo, Sun-Ho;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 1984
  • Soils in Cheju Island, derived mostly from volcanic ashes, were collected for chemical analysis to determine the effect of land utilization pattern on soil chemical characteristics. The coastal area has long been used for intensive farming and some of the mid-mountain region were recently reclaimed for agricultural crop production. The cation exchange capacity and the organic matter in the soils increased in the order of coastal area < mid-mountain belt < upper mountain area, while pH, base saturation, available phosphorus and exchangeable bases decreased with the elevation. Generally, the organic matter, the cation exchange capacity and the exchangeable bases of the Cheju soils were found to be considerably higher than the Korean mainland soils. However, the base saturation and the available phosphorus were far below the mainland average. The ratio of monovalent basic cations to total exchangeable bases showed the highest in the soils of the mountain belts and the lowest in the coastal area soils. These data suggest that a higher soil pH in the coastal area as compared to the mountainous slopes has resulted not from the sea water but from continuous application of alkaline fertilizers and times.

  • PDF

Energetic Thermoplastic Elastomers from Azidated Polyepichlorohydrin Rubber (Az-PECH)/ Styrene Acrylonitrile Copolymer (SAN) Blends (아지드화 폴리에피클로로히드린 고무/스티렌-아크릴로니트릴 공중합체 블렌드로부터 에너지함유열가소성탄성체 제조)

  • Choi, Myung-Chan;Chang, Young-Wook;Noh, Si-Tae;Kwon, Jung-Ok;Kim, Dong-Kook;Kwon, Soon-Kil
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.375-380
    • /
    • 2009
  • Polyepichlorohydrin rubber was treated with sodium azide (Na$N_3$) to replace its chlorine by azide ($N_3$). Then, the azidated polyepichlorohydrin rubber (Az-PECH) was blended with thermoplastic styrene-acrylonitrile copolymer with the rubber/plastic ratio of 80/20, 70/30 and 60/40 (wt/wt). The miscibility, mechanical and dynamic mechanical properties as well as elastic recovery properties of the blends were evaluated by DMA (Dynamic Mechanical Analyzer) and tensile tests. When azidation level in azidated PECH was upto 50%, the blends exhibited excellent miscibility, manifested by a single $T_g$, and fairly good elastic recovery. When azidation level was 75%, the blends showed phase separation. The miscible Az-PECH/SAN blends exhibited typical thermoplastic elastomer like properties, ie. melt processibility and high extensibility as well as good elastic recovery rate. It was also observed from combustion test that higher energy is released with the increase in the azidation level of the Az-PECH in the blends.

The Fundamental Characteristics for Mix Proportion of Multi-Component Cement (배합비에 따른 다성분계 시멘트의 기초특성)

  • Kim, Tae-Wan;Jeon, Jae-Woo;Seo, Min-A;Jo, Hyeon-Hyeong;Bae, Su-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.66-74
    • /
    • 2016
  • The aim of this research work is to investigate the mix proportion of multi-component cement incorporating ground granulated blast furnace(GGBFS), fly ash(FA) and silica fume(SF) as an addition to cement in ternary and quaternary combinations. The water-binder ratio was 0.45. In this study, 50% and 60% replacement ratios of mineral admixture to OPC was used, while series of combination of 20~40% GGBFS, 5~35% FA and 0~15% SF binder were used for fundamental characteristics tests. This study concern the GGBFS/FA ratio and SF contents of multi-component cement including the compressive strength, water absorptions, ultrasonic pulse velocity(UPV), drying shrinkage and X-ray diffraction(XRD) analysises. The results show that the addition of SF can reduce the water absorption and increase the compressive strength, UPV and drying shrinkage. These developments in the compressive strength, UPV and water absorption can be attributed to the fact that increase in the SF content tends basically to consume the calcium hydroxide crystals released from the hydration process leading to the formation of further CSH(calcium silicate hydrate). The strength, water absorption and UPV increases with an increase in GGBFS/FA ratios for a each SF contents. The relationship between GGBFS/FA ratios and compressive strength, water absorption, UPV is close to linear. It was found that the GGBFS/FA ratio and SF contents is the key factor governing the fundamental properties of multi-component cement.

Reverse Total Shoulder Arthroplasty: Where we are? "Principles" (견관절 역행성 인공관절 치환술의 원칙)

  • Noh, Kyu-Cheol;Suh, Il-Woo
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.105-110
    • /
    • 2011
  • Purpose: The purpose of this article is to identify and understand the complications of RTSA and to review the current methods of preventing and treating this malady. Materials and Methods: Previous constrained prostheses (ball-and-socket or reverse ball-and-socket designs) have failed because their center of rotation remained lateral to the scapula, which has limited of the motion of the prostheses and produced excessive torque on the glenoid component, and this leads to early loosening. The Grammont reverse prosthesis imposes a new biomechanical environment for the deltoid muscle to act, thus allowing it to compensate for the deficient rotator cuff muscles. Results: The clinical experience does live up to the lofty biomechanical concept and expectations: the reverse prosthesis restores active elevation above $90^{\circ}$ in patients with a cuff-deficient shoulder. However, external rotation often remains limited and particularly in patients with an absent or fat-infiltrated teres minor. Internal rotation is also rarely restored after a reverse prosthesis. Failure to restore sufficient tension in the deltoid may result in prosthetic instability. Conclusion: Finally, surgeons must be aware that the results are less predictable and the complication/revision rates are higher in revision surgery than that in the first surgery. A standardized monitoring tool that has clear definitions and assessment instructions is surely needed to document and then prevent complications after revision surgery.

Adsorption and Desorption Dynamics of Ethane and Ethylene in Displacement Desorption Process using Faujasite Zeolite (제올라이트(faujasite)를 이용한 치환탈착공정에서 에탄, 에틸렌의 흡, 탈착 동특성)

  • Lee, Ji-In;Park, Jong-Ho;Beum, Hee-Tae;Yi, Kwang-Bok;Ko, Chang-Hyun;Park, Sung Youl;Lee, Yong-taek;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.768-775
    • /
    • 2010
  • Adsorption dynamics of ethane/ethylene mixture gas and desorption dynamics during the displacement desorption with propane as a desorbent in the column filled with faujasite adsorbent were investigated experimentally and theoretically. The simulation that adopted heat and mass balance and an ideal adsorbed solution theory (IAST) for the multicomponent adsorption equilibrium well predicted the experimental breakthrough curves of the adsorption and desorption. At the adsorption breakthrough experiments, roll-ups of ethane increased as the adsorption pressure increased and the adsorption temperature decreased. During the displacement desorption with propane in the column saturated with ethane/ethylene mixture gas, almost 100% of ethylene was obtained for a certain time interval. The adsorption strength of the desorbent greatly affected the adsorption and re-adsorption dynamics of ethylene. The re-adsorption capacity for ethylene has been greatly reduced when iso-propane, which is stronger desorbent than propane, was used as desorbent. It was found from the simulation that the performance of the displacement desorption process would be superior when the ratio of ${(q_s{\times}b)}_{C_2H_4}/{(q_s{\times}b)}_{C_3H_s}$ was 0.83, that is, the adsorption strengths of ethylene and the desorbent were similar.

Analysis of the influence of combined use of ferronickel slag fine powder and admixture on VR sewage pipe strength development (페로니켈슬래그 미분말 및 혼화재의 복합사용이 VR 하수관 강도발현에 미치는 영향분석)

  • Nam, Sang-Koo;Chung, Tae-Jun;Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.214-221
    • /
    • 2018
  • In this paper, the effects of ferronickel slag powder and admixture on the strength of VR sewer pipe were analyzed. the substitution rate was tested as a variable, and the strength development was studied through the flexural strength, compressive strength and using SEM microscopic analysis. bending strength, compressive strength results and micro analysis using SEM showed the correlation in each case. the substitution rates were 20% and 30% relative to the mass of the OPC respectively, and were substituted according to a constant ratio of ferronickel slag fine powder and mixture. when the substitution ratio was 20%, the strength development was excellent. also, bending strength and compressive strength were the best when the ferronickel slag fine powder, quicklime, gypsum and calcium chloride were used as the admixture, dense microstructural patterns appeared. the possibility of progressive strength development is shown after 28 days.

Soil Physical and Chemical Characteristics of River-Bed Sediments in River Basins (하천 퇴적토양의 이화학적 특성)

  • Zhang, Yong-Seon;Sonn, Yeon-Gye;Park, Chan-Won;Hyun, Byung-Keun;Moon, Yong-Hee;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.963-969
    • /
    • 2011
  • The river-bed sediments from the major river basins were analysed for the chemical and physical properties to evaluate environmental safety for the agricultural uses. The samples were taken from 16 sites of Han river, 36 of Geumgang river, 27 of Yeongsan river, and 140 of Nakdong river. The total of 219 samples from the 28 counties were taken from the surface of the sediments at the depth of 50 cm. The particle density of the sediments was greater than $2.63Mg\;m^{-3}$ and the whole range of the density was $2.60{\sim}2.69Mg\;m^{-3}$, the average particle size was 0.7 mm whereas the size range was 0.075~0.85 mm. The analyses of the particle sizes by basins showed that Han and Geumgang river had particle sizes of 0.075~0.85 mm, while Geumgang and Yeongsan river had particle sizes of 0.25~0.85 mm. Geumgang and Yeongsan river tended to have greater particle sizes. The average values of the chemical properties were 6.3 for pH, $0.16dS\;m^{-1}$ for EC, $8g\;kg^{-1}$ for organic matter, $101mg\;kg^{-1}$ for available phosphate, 0.39, 3.47, and $0.93cmol_c\;kg^{-1}$ for exchangeable potassium, calcium, and magnesium respectively. The greatest property at each basin was pH for Han river, Ec, available phosphate and exchangeable sodium for Geumgang river, organic matter, exchangeable calcium and magnesium for Yeongsan river, and exchangeable potassium for Nakdong river.