• Title/Summary/Keyword: 치료테이블

Search Result 52, Processing Time 0.03 seconds

Influence of Couch and Collimator on Dose Distribution of RapidArc Treatment Planning for Prostate Cancer in Radiation Therapy (치료테이블과 콜리메이터가 전립선암 래피드아크 치료계획의 선량분포에 미치는 영향)

  • Kim, Hyung-Dong;Kim, Byung-Young;Kim, Sung-Jin;Yun, Sang-Mo;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • We investigated the influence of photon energy, couch and collimator angle differences between arcs on dose distribution of RapidArc treatment planning for prostate cancer. RapidArc plans were created for 6 MV and 10 MV photons using 2 arcs coplanar and noncoplanar fields. The collimator angle differences between two arcs were $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$. The plans were optimized using same dose constrains for target and OAR (organ at risk). To evaluate the dose distribution, plans were analyzed using CI (conformity index), HI (homogeneity index), QOC (quality of coverage), etc. Photon energy, couch and collimator angle differences between arcs had a little influence on the target and OAR. The difference of dosimetric indices was less than 3.6% in the target and OAR. However, there was significant increase in the region exposed to low dose. The increase of V15% in the femur was 6.4% (left) and 5.5% (right) for the 6 MV treatment plan and 23.4% (left), 24.1% (right) for the noncoplanar plan. The increase of V10% in the Far Region distant from target was 54.2 cc for the 6 MV photon energy, 343.4 cc for the noncoplanar and 457.8 cc for the no collimator rotation between arcs.

The Study on the Head and Neck Phantom for Quality Assurance of Intensity Modulated Radiotherapy (세기변조방사선치료의 정도관리를 위한 두경부 팬톰 제작에 관한 연구)

  • Shin Dongho;Park Sung-Yong;Kim Joo Young;Lee Se Byeong;Cho Jung Keun;Kim Dae Yong;Cho Kwan Ho
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • For the QA of IMRT treatment of head and neck cancer by using M3 (BrainLAB Inc. Germany), it is not easy to measure delivery dose exactly because the dose attenuation appears by the couch according to the position of table and gantry. In order to solve this problem, we fabricated head and neck phantom which would be implemented on the couch mount of Brain Lab Inc. We investigated dose attenuation by the couch and found the difference of dose distribution by the couch, in the applying this phantom to the clinic. After measurement, we found that point dose attenuation was 35% at maximum and dose difference was 5.4% for a point dose measurement of actual patient quality assurance plan.

  • PDF

A Correction Method of Dose to Attenuation Rate of Transmitting Photon Beam Through Couch Top for Radiosurgery Using Novalis (노발리스를 이용한 방사선 수술시 치료테이블을 투과하는 광자선의 감쇠율에 따른 선량 보정방법)

  • Kim, Sung-Joon;Shin, Hyun-Soo;Ko, Seung-Young;Park, Hye-Li;Kim, Ja-Young;Lee, Bo-Mi;Yea, Ji-Woon;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • This study has its own goal to deliver the accurate dose on the target volume by calculating and modifying the attenuation rate of photon beam transmitting the couch top with geometric model. The experiment was that the transmission rate and attenuation rate of photon beam transmitting the couch top was predicted by the geometric model, then compared and analyzed with what was measured experimentally based on that. The result showed that the predicted value by the geometric model accorded closely with the experimental value. In addition, in order to judge whether the practical clinical application is available, the point dose, measured after modifying the attenuation rate modelinged according to the treatment plan of a patient of spine radiosurgery, was compared with the one done nothing. The result was that the former showed decreased error range with treatment planned one than the latter. This papers calculated the transmission and attenuation rate with the geometric model transmitting the couch top and verified it experimentally. This method is expected to be very useful in not only the radiosurgery using Novalis but also the general radiation therapy.

Evaluation of Accuracy About 2D vs 3D Real-Time Position Management System Based on Couch Rotation when non-Coplanar Respiratory Gated Radiation Therapy (비동일평면 호흡동조방사선치료 시 테이블 회전에 따른 2D vs 3D Real-Time Position Management 시스템의 정확성 평가)

  • Kwon, Kyung-Tae;Kim, Jung-Soo;Sim, Hyun-Sun;Min, Jung-Whan;Son, Soon-Yong;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.601-606
    • /
    • 2016
  • Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by $10^{\circ}$ in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by $10^{\circ}$ in the clockwise direction and compared with the baseline at the reference $0^{\circ}$. The reference amplitude was 1.173 to 1.165, the couch angle at $20^{\circ}$ was 1.132, and the couch angle at $1.0^{\circ}$ was 1.083. At $350^{\circ}$ counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at $340^{\circ}$ was 1.124, and the couch angle at $330^{\circ}$ was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change.

3D 치료시 Couch rotation에 의한 Isocenter 변화에 대한 고찰

  • 박용철;주상규;송기원;정천영
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.144-146
    • /
    • 2000
  • 삼차원 입체조형치료는 정상조직의 장해를 최소화하고 종양부위에 집중적으로 조사할 수 있는 장점을 가지고 있어 임상 적용범위가 넓어지고 있다. 일반적으로 정상조직의 장해를 줄이기 위해 다양한 방사선 조사방향이 사용되며 특히 비 동일면상에서의 조사가 많이 이루어진다. 따라서 couch 회전이 동반되며 couch는 선형가속기의 다른 기계적 오차보다 많은 오차를 유발할 수 있는 잠재적인 위험을 안고 있다. 저자는 이러한 오차의 정도를 파악하고 이를 개선할 수 있는 방법에 대해 알아보고자 했다. couch 회전에 따른 Isocenter의 변화를 평가하기 위해 3대(Primus, Simens, USA/CL600c & 2100c, Varian, USA)의 선형가속기를 이용하였으며 이중 1대의 장비에는 couch 회전시 오차를 줄이기 위해 고안된 couch 고정장치를 장착하였다. 환자가 테이블에 부하를 주지 않은 상태에서 회전을 실시하여 Isocenter의 변화를 측정하고 환자가 테이블에 누워있는 상황을 재현하기 위해 human phantom을 위치시킨 후 동일한 회전검사를 실시하여 각각의 오차를 비교 분석하였다. 각 실험은 10회씩 반복 측정하여 평균치를 얻었으며 오차의 분석은 AAPM 권고안인 오차중심의 반경으로 표현했다. 3대의 선형가속기를 이용하여 얻은 결과 테이블에 부하를 주지 않은 상태의 회전오차는 평균 2mm, 3.2mm, 2mm로 측정되었으며 휴먼 phantom을 올려놓고 부하를 준 상태에서의 오차는 평균 2.1mm, 4mm, 2.1 mm이였다. 또한 고정장치를 이용한 상태에서의 평균오차는 1.9mm로 나타났다. 삼차원 입체조형치료 시 couch 회전에 따른 Isocenter 오차는 장비의 종류 및 작업자의 사용방법에 따라 다르게 나타났으며 테이블의 부하가 클수록 많은 오차를 보였다. 또한 couch 고정장치를 부착한 장비에서의 결과치 만이 AAPM에서 권고하는 오차의 한계에(${\le}2mm$) 들어감을 알 수 있었다. 따라서 정기적인 QA가 필수적이며 Couch Locking System과 같이 오차를 줄일 수 있는 보조장치의 부착이 많은 도움을 줄 것으로 생각된다. 아울러 이러한 오차를 보정할 수 있는 방법이 강구되어야 할 것으로 사료된다.

  • PDF

Analysis of Couch Sag Using Image Processing of MVCT Images in Tomotherapy (토모테라피에서 MVCT 영상을 이용한 환자 테이블의 처짐 정도의 분석)

  • Park, Ha Ryung;Kim, Yong Ho;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Bae, Jin Suk
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.106-111
    • /
    • 2015
  • In Tomotherapy the couch sags during the treatment due to the weight of the patient. In this study, we developed a simple method to obtain the amount of the sag and the pitch angle of the couch using the image processing technique of MVCT images in Tomotherapy. Using the method we evaluated the sag and pitch of couch for 22 head and neck patients and one craniospinal irradiation (CSI) patient. The sag and the average pitch angle of couch were 0.40~1.54 mm and $0.7^{\circ}$ for head and neck patients, respectively. For head and neck patients, the sag increased as the longitudinal length of the irradiation volume increased and the pitch angle showed no relationship with the longitudinal length. For the CSI patient the sag was 4.97 mm. Using the method the amount of the couch sag could be measured easily and the measured data could be useful in determination of margins considering the table sag error.

Bedside Teaching of Relaxation Technique for Terminal Cancer Patients Treated with Radiation Therapy (방사선치료를 받는 말기암환자들을 대상으로 한 이완요법)

  • Kim, Sang-Won;Chun, Mison;Kim, Hyo Shin
    • Journal of Hospice and Palliative Care
    • /
    • v.19 no.3
    • /
    • pp.256-261
    • /
    • 2016
  • Radiation therapy is an effective modality to alleviate cancer-related symptoms. To deliver radiation accurately, it is essential to secure stability of the treatment position in patients during each treatment time. However, some patients could be less cooperative due to their psychoemotional issues. We present two cases of terminal-stage cancer patients who were initially unable to lie still on the treatment table before simulation. A relaxation technique was taught to them on the bed, and they could relax and undergo radiation therapy with effective symptom relief.

The Dose Attenuation according to the Gantry Angle and the Photon Energy Using the Standard Exact Couch and the 6D Robotic Couch (Standard Exact Couch와 6D Robotic Couch를 이용한 광자선의 조사각에 따른 선량 감쇠에 대한 연구)

  • Kim, Tae Hyeong;Oh, Se An;Yea, Ji Woon;Park, Jae Won;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.79-85
    • /
    • 2016
  • The objective of this study is to increase the accuracy of dose transmission in radiation therapy using two types of treatment tables, standard exact couch (Varian 21EX, Varian Medical Systems, Milpitas, CA) and 6D robotic couch (Novalis, BrainLAB A.G., Heimstetten, Germany)). We examined the dose attenuation based on the two types of treatment tables and studied the dose of attenuation using the phase (In/Out) for the standard exact couch. We measured the relative dose according to the incident angle of a penetrative photon beam under a treatment table. The incident angle of the photon beam was from $0^{\circ}$ to $360^{\circ}$ in the increments of $5^{\circ}$. The reference angle was set to $0^{\circ}$. Furthermore, the relative dose of the 6D robotic couch was measured using 6 MV and 15 MV, and that of the standard exact couch was measured at the sliding rail position (In-Out) using 6 MV and 10 MV. In the case of the standard exact couch, the measured relative dose was 16.53% (rails at the "In position," $175^{\circ}$, 6 MV), 12.42% (rails at the "In position," $175^{\circ}$, 10 MV), 13.13% (rails at the "Out position," $175^{\circ}$, 6 MV), and 9.96% (rails at the "Out position," $175^{\circ}$, 10 MV). In the case of the 6D robotic couch, the measured relative dose was 6.82% ($130^{\circ}$, 6 MV) and 4.92% ($130^{\circ}$, 15 MV). The photon energies were surveyed at the same incident angle. The dose attenuation for an energy of 10 MV was 4~5% lower than that for 6 MV. This indicated that the higher photon energy, lesser is the attenuation. The results of this study indicated that the attenuation rate for the 6D robotic couch was confirmed to be 1% larger than that for the standard exact couch at 6 MV and $180^{\circ}$. In the case of the standard exact couch, the dose attenuation was found to change rapidly in accordance with the phase ("In position" and "Out position") of the sliding rail.