• Title/Summary/Keyword: 층류유동

Search Result 268, Processing Time 0.019 seconds

A Combustion Characteristics of Attached Jet Flame under the Regular Oscillation (규칙적인 진동 하에서 노즐 부착된 제트화염의 연소특성)

  • Kim, Dae-Won;Lee, Kee-Man
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • A general combustion characteristics of forcing nonpremixed jet in laminar flow rates have been conducted experimentally to investigate the effect of forcing amplitude with the resonant frequency of fuel tube. There are two patterns of the flame lift-off feature according to the velocity increasing; one has the decreasing values of forcing amplitude on the lift-off occurrence when a fuel exit velocity is increasing, while the other has the increasing values. These mean that there are the different mechanisms in the lift-off stability of forced jet diffusion flame. Especially, the characteristics of attached jet flame regime are concentrically observed with flame lengths, shapes, flow response and velocity profiles at the nozzle exit as the central figure. The notable observations are that the flame enlogation, in-homing flame and the occurrence of a vortical motion turnabout have happened according to the increase of forcing amplitude. It is understood by the velocity measurements and visualization methods that these phenomena have been relevance to an entrainment of surrounding oxygen into the fuel nozzle as the negative part of the fluctuating velocity has begun at the inner part of the fuel nozzle.

Performance Predictions of Gas Foil Thrust Bearings with Turbulent Flow (난류 유동을 갖는 가스 포일 스러스트 베어링의 성능 예측)

  • Mun, Jin Hyeok;Kim, TaeHo
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.300-309
    • /
    • 2019
  • Gas foil thrust bearings (GFTBs) support axial loads in oil-free, high speed rotating machinery using air or gas as a lubricant. Due to the inherent low viscosity of the lubricant, GFTBs often have super-laminar flows in the film region at operating conditions with high Reynolds numbers. This paper develops a mathematical model of a GFTB with turbulent flows and validates the model predictions against those from the literature. The pressure distribution, film thickness distribution, load carrying capacity, and power loss are predicted for both laminar and turbulent flow models and compared with each other. Predictions for an air lubricant show that the GFTB has high Reynolds numbers at the leading edge where the film thickness is large and relatively low Reynolds numbers at the trailing edge. The predicted load capacity and power loss for the turbulent flow model show little difference from those for the laminar flow model even at the highest speed of 100 krpm, because the Reynolds numbers are smaller than the critical Reynolds number. On the other hand, refrigerant (R-134a) lubricant, which has a higher density than air, had significant differences due to high Reynolds numbers in the film region, in particular, near the leading and outer edges. The predicted load capacity and power loss for the turbulent flow model are 2.1 and 2.3 times larger, respectively, than those for the laminar flow model, thus implying that the turbulent flow greatly affects the performance of the GFTB.

Liquid Film Thickness Measurement by An Ultrasonic Pulse Echo Method (초음파 Pulse-echo 방법에 의한 액체막 두께 측정)

  • Jong Ryul Park;Jong-Ryul Park;Se Kyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.25-33
    • /
    • 1985
  • The main purpose of this work is to investigate the effects of the wall thickness, the ultrasonic frequency, and the acoustic impedance of wall material on the liquid-film thickness measurement by an ultrasonic pulse echo method. A series of liquid-film thickness measurements in a horizontal air-water stratified system was performed employing a plate-type and a tube-type test sections. Measurements were repeated changing (1) the wall thickness of the test section and (2) the transducer frequency. Also, in an effort to improve the accuracy of the measurement and to exam me the effect of acoustic impedance of wall material on the measurement by an ultrasonic technique, two different stand-off rods, one made of stainless steel and the other polyacrylate, were used in the liquid-film thickness measurement. These experimental results are discussed and compared with the actual film thicknesses.

  • PDF

Performance Predictions of Gas Foil Journal Bearings with Turbulent Flows (난류 유동을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Mun, Jin Hyeok;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.190-198
    • /
    • 2019
  • Gas foil bearings (GFBs) enable small- to medium-sized turbomachinery to operate at ultra-high speeds in a compact design by using ambient air or process gas as a lubricant. When using air or process gas, which have lower viscosity than lubricant oil, the turbomachinery has the advantage of reduced power loss from bearing friction drag. However, GFBs may have high Reynolds number, which causes turbulent flows due to process gas with low viscosity and high density. This paper analyzes gas foil journal bearings (GFJBs) with high Reynolds numbers and studies the effects of turbulent flows on the static and dynamic performance of bearings. For comparison purposes, air and R-134a gas lubricants are applied to the GFJBs. For the air lubricant, turbulence is dominant only at rotor speeds higher than 200 krpm. At those speeds, the journal eccentricity decreases, but the film thickness, power loss, and direct stiffness and damping coefficients increase. On the other hand, the R-134a gas lubricant, which that has much higher density than air, causes dominant turbulence at rotor speeds greater than 10 krpm. The turbulent flow model predicts decreased journal eccentricity but increased film thickness and power loss when compared with the lamina flow model predictions. The vertical direct stiffness and damping coefficients are lower at speeds below 100 krpm, but higher beyond that speeds for the turbulent model. The present results indicate that turbulent flow effects should be considered for accurate performance predictions of GFJBs with high Reynolds number.

전자부품의 냉각을 위한 자연대류 상관 관계식의 평가

  • 이재헌
    • Journal of the KSME
    • /
    • v.27 no.6
    • /
    • pp.504-514
    • /
    • 1987
  • 복잡한 전자부품의 조립시에 필요한 열적 디자인에 관한 정보는 오래전부터 실험을 통하여 얻어지고 있다. 실험적 데이터를 이용하여 무차원 파라미터로 표시된 실험결과는 꼭 같지는 않지만 현상적으로는 비슷한 상황에 응용될 수 있다. 여기서는 학술문헌에 나타나 있는 자연대류에 관한 실험적인 상관관계식들과 프레임에 수직으로 꽂혀있는 균일가열 전자회로기판의 모델에서 얻어진 무차원 자료들을 비교하고자 한다. 대부분의 자료들은 수정채널 Rayleigh수(Ra")가 15~100범위에 속하며, 이러한 범위는 부품이 조밀하게 배치된 기관이 서로 좁은 채널을 이루고 있으며, 동시에 상당한 전력을 소비하고 있는 경우에 해당한다. Wirt와 Stutzman, Bar-Cohen과 Rohsenow의 일반상관관계식은 AT'||'&'||'T Bell 연구소에서 개발된 전자기기를 이용하여 수집한 실험데이터를 잘 표현하고 있으며 10 < Ra" <1,000범위에서 추천될 수 있다. 두개의 유사한 상관관계식과 비교할 때 상당히 좋은 예측을 보였으며 또한 Sparrow와 Gregg의 연구결과와도 잘 일치하므로 Ra" < 10인 경우에 Aung의 완전발달층류의 채널유동방식, Ra" > 1,000인 경우에는 Aung등의 단일 수직평판 근사식이 추천될 수 있다. Coyne의 알고리즘에 의한 계산치는 10

  • PDF

Double Frequency Forcing of the Laminar Separated Flow over a Backward-Facing Step (층류박리 후향계단 유동의 이중주파수 가진)

  • Kim, Sung-Wook;Choi, Hae-Cheon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1023-1032
    • /
    • 2003
  • The effect of local forcing on the separated flow over a backward-facing step is investigated through hot-wire measurements and flow visualization with multi-smoke wires. The boundary layer upstream of the separation point is laminar and the Reynolds number based on the free stream velocity and the step height is 13800. The local forcing is given from a slit located at the step edge and the forcing signal is always defined when the wind tunnel is in operation. In case of single frequency forcing, the streamwise velocity and the reattachment length are measured under forcing with various forcing frequencies. For the range of 0.010〈S $t_{\theta}$〈0.013, the forcing frequency component of the streamwise velocity fluctuation grows exponentially and is saturated at x/h = 0.75 , while its subharmonic component grows following the fundamental and is saturated at x/h = 2.0. However, the saturated value of the subharmonic is much lower than that of the fundamental. It is observed that the vortex formation is inhibited by the forcing at S $t_{\theta}$ = 0.019 . For double frequency forcing, natural instability frequency is adopted as a fundamental frequency and its subharmonic is superposed on it. The fundamental frequency component of the streamwise velocity grows exponentially and is saturated at 0.5 < x/h < 0.75, while its subharmonic component grows following the fundamental and is saturated at x/h= 1.5 . Furthermore, the saturated value of the subharmonic component is much higher than that for the single frequency forcing and is nearly the same or higher than that of the fundamental. It is observed that the subharmonic component does not grow for the narrow range of the initial phase difference. This means that there is a range of the initial phase difference where the vortex parring cannot be enhanced or amplified by double frequency forcing. In addition, this effect of the initial phase difference on the development of the shear layer and the distribution of the reattachment length shows a similar trend. From these observations, it can be inferred that the development of the shear layer and the reattachment length are closely related to the vortex paring.

Numerical Simulations of Nonlinear Behaviors of Pulsating Instabilities in Counterflow Diffusion Flames (대향류 확산화염에서 맥동 불안정성의 비선형 거동에 대한 수치해석)

  • Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.859-866
    • /
    • 2010
  • Nonlinear dynamics of pulsating instability-diffusional-thermal instability with Lewis numbers sufficiently higher than unity-in counterflow diffusion flames, is numerically investigated by imposing a Damkohler number perturbation. The flame evolution exhibits three types of nonlinear behaviors, namely, decaying pulsating behavior, diverging behavior (which leads to extinction), and stable limit-cycle behavior. The stable limit-cycle behavior is observed in counterflow diffusion flames, but not in diffusion flames with a stagnant mixing layer. The critical value of the perturbed Damkohler number, which indicates the region where the three different flame behaviors can be observed, is obtained. A stable simple limit cycle, in which two supercritical Hopf bifurcations exist, is found in a narrow range of Damkohler numbers. As the flame temperature is increased, the stable simple limit cycle disappears and an unstable limit cycle corresponding to subcritical Hopf bifurcation appears. The period-doubling bifurcation is found to occur in a certain range of Damkohler numbers and temperatures, which leads to extend the lower boundary of supercritical Hopf bifurcation.

Effect of AC Electric Fields on Flow Instability in Laminar Jets (층류제트유동 불안정성에 미치는 교류 전기장 효과)

  • Kim, Gyeong Taek;Lee, Won June;Cha, Min Suk;Park, Jeong;Chung, Suk Ho;Kwon, Oh Boong;Kim, Min Kuk;Lee, Sang Min
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • The effect of applied electric fields on jet flow instability was investigated experimentally by varying the direct current (DC) voltage and the alternating current (AC) frequency and voltage applied to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configuration, which occur when AC electric fields are applied. The results indicate that a twin-lifted jet flames originates from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as $O_2+e{\rightarrow}O_2{^-}$ when AC electric fields are applied. This was confirmed by experiments in which a variety of gaseous jets were ejected from a nozzle to which DC voltages and AC frequencies and voltages were applied, with ambient air between two deflection plates connected to a DC power source. Experiments in which jet flows of several gases were ejected from a nozzle and AC electric fields were applied in coflow-nitrogen provided further evidence. The flow instability occurred only for oxygen and air jets. Additionally, jet instability occurred when the applied frequency was less than 80 Hz, corresponding to the characteristic collision response time. The effect of AC electric fields on the overall structure of the jet flows is also reported. Based on these results, we propose a mechanism to reduce jet flow instability when AC electric fields are applied to the nozzle.