• Title/Summary/Keyword: 층간 변위

Search Result 173, Processing Time 0.028 seconds

Estimation of Response Modification Factor and Nonlinear Displacement for Moment Resisting Reinforced Concrete Frames (철근콘크리트 연성 모멘트골조에 대한 반응수정계수와 비선형 변위량의 평가)

  • 김길환;전대한;이상호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.29-37
    • /
    • 2002
  • The purpose of this study is to provide a fundamental data of earthquake resistant design through the estimation of the response modification factor and nonlinear displacement for moment resisting reinforced concrete frames by linear and nonlinear static analysis. The analysis models are designed in accordance with AIK code and then, estimated the response modification factor and nonlinear displacement of the buildings. The parameters such as story numbers(10, 20, 30), plan ratios(1:1, 1:2) and analysis types(2D, 3D) of building structure are chosen for use in this study. After comparing the results of linear and nonlinear static analysis, the response modification factor is obtained as the product of four factors: ductility factor, strength factor, damping factor and redundancy factor. The response modification factor are close to 3.5 in case of 2 span, 4.3 in case of 3 span and 5.0 in case 4 or more span models regardless number of stories and plan ratios. The nonlinear displacement is evaluated from the ratio of story drift angle(nonlinear drift/linear drift). The ratio of story drift angle increases as story numbers increase and the value varies from 5.85 to 9.34.

Dynamic Characteristics Recovery of Delaminated Composite Structure (층간 분리가 있는 복합재 구조물의 동적특성 회복)

  • Sohn, Jung Woo;Kim, Heung Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-51
    • /
    • 2015
  • In this paper, feasibility of dynamic characteristics recovery of delaminated composite structure is numerically studied by using active control algorithm and piezoelectric actuator. Macro-fiber composite(MFC), which has great flexibility and high actuating force, is considered as an actuator in this work. After construction of finite element model for delaminated composite structure based on improved layerwise theory, modal characteristics are investigated and changes of natural frequencies and mode shapes, caused by delamination, are observed. Then, active control algorithm is realized and implemented to system model and control performances are numerically evaluated. Dynamic characteristics of delaminated composite structure are effectively recovered to those of healthy composite structure.

Seismic Performance of a Knee-Braced Moment Resisting Frame (Knee brace가 설치된 모멘트저항골조의 내진성능)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.171-180
    • /
    • 2005
  • In this study the seismic performance of a three-story knee-braced moment-resisting frame (KBMRF), which is typically employed to support pipelines for oil or gas, was investigated. Nonlinear static pushover analyses were performed first to observe the force-displacement relationship of KBMRF under increasing seismic load. The results show that, when the maximum inter-story drift reached 1.5% of the story height, the main structural members, such as beams and columns, still remained elastic. Then nonlinear dynamic time-history analyses were carried out using eight earthquake ground motion time-histories scaled to at the design spectrum of UBC-97. It turned out that the maximum inter-story drift was smaller than the drift limit of 1.5 % of the structure height, and that the columns remained elastic. Based on these analytical results, it can be concluded that the seismic performance of the structure satisfies all the requirements regulated in the seismic code.

Experimental Study for Seismic Behavior Analysis of a Fire Protection Riser Pipe System with Groove Joints (그루브 조인트가 설치된 수계소화설비 입상배관계통의 지진거동분석을 위한 실험적 연구)

  • Kim, Sung-Wan;Yun, Da-Woon;Kim, Jae-Bong;Jeon, Bub-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.35-42
    • /
    • 2021
  • In this study, a steel frame that realized the second floor of a structure was fabricated in referring to NFPA 13. In addition, a riser pipe system with groove joints was installed, and a seismic simulation test was performed using static cyclic loading. Cyclic loading tests on the maximum allowable side sway of seismic design standards for buildings in Korea were conducted using actuators to analyze the seismic behavior of the riser pipe system and major piping elements due to the deformation of the steel frame structure or the displacement-dominant behavior caused by the relative displacement between the structural members in the event of a seismic load. Moreover, the deformation angle of the riser pipe system was measured using an image measurement system because it is difficult to measure using the conventional sensors.

Analytical Study on Viscoelastic Damper System with Displacement-Amplification Unit (변위증폭형 점탄성 댐퍼시스템에 관한 해석적 연구)

  • Son, Young-Seon;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.205-206
    • /
    • 2009
  • This study deals with the viscoelastic damper system with displacement-amplification unit (DAU) which can maximize the effectiveness of a damper system in controlling seismic response of a building by amplifying story drift induced to damper. DAUs in this study were analyzed to be able to amplify the displacement 2 to 4 times greater than the original story drift. The efficiency of each DAU was expressed by $\beta$ (DAU ratio) and examined in this analytical study.

  • PDF

Damping and Isolation Performance of Steel Structure (철골 구조물의 제진 및 면진성능)

  • Yun, Hyun-Do;Park, Wan-Shin;Han, Byung-Chan;Hwang, Sun-Kyoung;Lee, Giu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.221-230
    • /
    • 2004
  • In this paper, the dynamic response of a multi-story steel moment resisting frame equipped with viscoelastic dampers or lead rubber bearing type isolators subjected to seismic loads is investigated analytically. The objective of this study is to find the best location of viscoelastic dampers by the maximum stress method and maximum story drifts method from structure analysis. Also, a secondary objective of the study is to compare the member force, combined stress, and natural period of the structure retrofitted with viscoelastic dampers or lead rubber bearing type isolators to find effective vibration control method.

An Analysis on the seismic Performance of Additional Shear-Wall Construction for the Remodeling of Shear-Wall Type Apartment Buildings (벽식구조 아파트 리모델링을 위한 전단벽 신설공법의 내진성능 분석)

  • Hong, Geon-Ho;Jung, Woo-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.153-162
    • /
    • 2007
  • The purpose of this study is to suggest structural design guidelines in additional shear-wall construction method for apartment remodeling with understanding the effects of the position, length and thickness of the additional walls. The slab-wall frames under seismic loads are analyzed using effective beam width model, which can practically evaluate the structural performance of existing building system. According to the results, proper design guidelines of additional shear-wall construction method(position, length and thickness) is suggested to get the required seismic performance.

Seismic Performance of RC Frame System Retrofitted with TS Seismic Strengthening Method(Part 2:Analytical Study) (TS 제진공법으로 내진보강된 철근콘크리트 골조의 내진성능(Part 2:해석적 연구))

  • Jung, Myung-Cheol;Song, Jeong-Weon;Song, Jin-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2018
  • In this study, the nonlinear time history analysis of seismic retrofitted structures with TS damper for seven ground motion records was conducted for the purpose of verifying the seismic strengthening effect of TS seismic retrofitting method. Through comparison of the interstory drift ratio and the energy dissipation amount of the non - reinforced structure obtained and those of retrofitted structures with TS damper from the nonlinear time history analysis, the interstory drift ratio was reduced by about 30% and the amount of energy dissipation through the structure was halved. As a result, it was confirmed that the damping performance of the TS seismic retrofitting method is excellent.

Response scaling factors for nonlinear response analysis of MDOF system (다층건물의 비선형 반응해석을 위한 반응수정계수)

  • 한상환;이리형
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.103-111
    • /
    • 1995
  • Evaluating nonlinear response of a MDOF system under dynamic stochastic loads such as seismic excitation usually requires excessive computational efforts. To alleviate this computational difficulty, an approximation is developed in which the MDOF inelastic system is replaced by a simple nonlinear equivalent system(ENS).Me ENS retains the most important properties of the original system such as dynamic characteristics of the first two modes and the global yielding behavior of the MDOF system. The system response is described by the maximum global(building) and local(interstory) drifts. The equivalency is achieved by two response scaling factors, a global response scaling factor R/sub G/, and a local response scaling factor R/sub L/, applied to the responses of the ENS to match those of the original MDOF system. These response scaling factors are obtained as functions of ductility and mass participation factors of the first two modes of structures by extensive regression analyses based on results of responses of the MDOF system and the ENS to actual ground accelerations recorded in past earthquakes. To develop the ENS with two response scaling factors, Special Moment Resisting Steel Frames are considered. Then, these response scaling factors are applied to the response of ENS to obtain the nonlinear response of MDOF system.

  • PDF

Inelastic Time History Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint on the response of RC OMRF are evaluated in the inelastic time history analysis. For an example, a 5-story structure for site class SB and seismic design category C was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was evaluated using fiber model and bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship. The hysteretic behavior was simulated using three-parameter model suggested in IDARC program. The inelastic time history analysis with PGA for return period of 2400 years showed that the model with inelastic beam-column joint yielded smaller maximum base shear force but nearly equivalent maximum roof displacement and maximum story drift as those obtained from analysis using rigid joint. The maximum story drift satisfied the criteria of KBC2009. Therefore, the inelastic shear behavior of beam-column joint could be neglected in the structural design.