• Title/Summary/Keyword: 측정 정밀도

Search Result 3,920, Processing Time 0.032 seconds

Nanometrological Application of X-ray Interferometry (엑스선 간섭계를 이용한 초정밀측정)

  • 엄천일
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.40-45
    • /
    • 2000
  • 교정은 모든 측정분야에서 어렵고 까다로운 주제인데, 특히 정전센서, 레이저간섭계, AFM, STM 등을 포함하는 나노메트롤로지(nanometrology : 나노측정) 분야에서는 그러하다. 나노측정에서는 전체 측정범위가 센서들의 한계분해능 값과 비슷한데, 이러한 측정에서 높은 소급성을 유지하기는 매우 어렵기 때문이다.(중략)

  • PDF

Fiber Bragg grating sensor using a Mach-Zehnder interferometer and EDFA for EDFA for simultaneous measurement of strain and temperature. (마하젠더 간섭계와 EDFA를 이용한 온도와 스트레인을 동시에 측정하는 광섬유 브래그 격자 센서)

  • 최민호;김부균;정재훈;이병호
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.371-375
    • /
    • 2001
  • We have implemented a sensor head which consists of erbium doped fiber pumped by 1480 nm LD and single fiber Bragg grating for simultaneous measurement of strain and temperature. The measurement precision and speed are improved by using Mach-Zehnder interferometer instead of optical spectrum analyzer (OSA) as a demodulator. The measurement precision of temperature measured by the amplitude variation of output signal is 0.05$^{\circ}C$ and that of strain measured by the phase variation of output signal is 0.1$\mu$strain. The measurement precision of temperature and strain are improved nearly 140 times and 700 times, respectively, compared to those using an OSA with wavelength resolution of 0.97 nm as d demodulator.

  • PDF

A Study on the Precision Measurement of Metallic Resistivity by Four Terminal Method (4 단자 방법에 의한 금속 비저항의 정밀측정에 관한 연구)

  • Kang, Jeon-Hong;Kim, Han-Jun;Yu, Kwang-Min;Han, Sang-Ok;Park, Kang-Sic;Lee, Sei-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.498-499
    • /
    • 2007
  • 금속 비저항의 측정방법은 4단자 방법을 비롯한 van der Pauw 방법, Four-Point Probe(FPP) 방법, eddy current 방법 등이 사용되고 있으며, 시료의 혈상과 크기에 따라서 그 측정방법은 각각 다르다. 본 연구에서는 그 중 4단자 방법에 의한 정밀측정방법과 측정불확도 평가에 관하여 고찰하였다. 4단자 방법은 시료가 바(bar)나 봉(rod) 형상이면 측정이 가능하며, 시료의 정밀가공과 측정기술을 통하여 측정 불확도를 줄일 수 있다.

  • PDF

Performance Analysis of Range and Velocity Measurement Algorithm for Multi-Function Radar using Discriminator Estimation Method (변별기 추정방식을 적용한 다기능 레이다용 거리 및 속도 측정 알고리즘 성능 분석)

  • Choi Beyung Gwan;Lee Bum Suk;Kim Whan Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.109-117
    • /
    • 2005
  • Range and velocity measurement algorithm is a procedure for estimating the accurate target position by using matched filter outputs equally spaced both in range and doppler frequency domain. Especially, in measurement algorithm for multi-function radar, it is necessary to consider processing time as well as accuracy in order to track multi-targets simultaneously. In this paper, we analyze range and velocity measurement algorithm using discriminator estimation method which is a technique applied to angle measurement of monopulse radar. The applied method required constant processing time for estimation can be used in multiple target tacking. But, it is necessary to consider measurement accuracy because of using minimum channel outputs for estimation. In the simulation, we show that the applied method is superior to the traditional gravity center measurement algorithm with respect to the accuracy performance and also analyze the characteristics of the proposed technique by calculating RMS error level as the processing parameters such as pulse width , channel step, etc. change.

A Study on Precise Positioning with Doppler Measurements for Ground Transportation System (도플러 측정치를 이용한 육상교통 환경에 적합한 정밀 측위 기법 연구)

  • Lee, Byung-Hyun;Jee, Gyu-In
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.632-639
    • /
    • 2010
  • Ground Transportation is one of the most required field that users need positioning information Especially, more precise position can make smart traffic management possible and bring convenience to users. By advanced wireless network, cars can receive the GPS information of reference station in any tim e and any where. Thus land vehicles are possible to process precise positioning. In general, for precise positioning code and phase measurements are used. But receivers provide not only code and phase measurements but also doppler measurements and Doppler is direct measurement of velocity. In this paper, because velocity is very important information required in Ground Transportation, precise positioning for Ground Transportation is studied. For precise positioning RTK(Real-Time Kinematic) was used and double differenced doppler measurements were added, As a Result, positioning error by multipath and cycle slip was soften. However there still remained Positioning error. Thus smoothing technique using doppler measurement in position domain is used for softening positioning error.

A Study on Algorithm for Gear Profile Measurement Using a Standard Gear (표준기어를 이용한 기어 프로파일 정밀측정 알고리즘에 관한 연구)

  • Lee, Min-Ki;Lee, Eung-Suk;Kim, Kuang-Jung;Park, Hyun-Yoong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.555-561
    • /
    • 2012
  • In this paper, a method to control the noise and vibration of a standard gear transmitting mechanical power in the transmission insides, to things regarding a way to inspect the gear which was processed minutely. In an algorithm used to accurately measure a work gear, the measurements of the master gear are considered as the basis. The existing method considers one rotation of the standard gear and monitor gear, and that carried out mastering work in frequency ways. In this study, an algorithm to measure standard gear and monitor gear is proposed along with methods to calculate an error of the monitor gear and to significantly increase the precision of gear measurement. Further, the algorithm is fast and is expected to be capable of accurately measuring for mastering processing.

Development of High Precision Impedance Measurement Systems in Specific Ranges Using a Microprocessor (마이크로프로세서를 이용한 특정 영역에서 고정밀 임피던스 측정 시스템 개발)

  • Ryu, Jae-Chun;Lee, Myung-Eui
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.316-321
    • /
    • 2019
  • In this paper, by applying the constant current principle we develop an impedance measurement system which can measure the high precision impedance of various electric materials by using microprocessor. This measurement system board has an interface device for acquiring digital data from an external device including an impedance measuring device, and system software is also developed by a firmware program executed on such an embedded board. It can measure the high precision impedance of a specific band with 1/32768 precision by using 15-bit ADC(analog to digital converter) and calculate it to the five digits to the right of the decimal point(fraction part). Data is transmitted through a USB interface of a general computer and a measuring device to manage digital data. An impedance measurement system equipped with a communication function capable of a more general and easy-to-use interface than other equipment is developed and verified.

An Investigation on Influence of Vibration Noise in Cooling Tower on Precision Equipments (산업용 냉각탑의 진동소음이 정밀장비에 미치는 영향에 대한 연구)

  • Lee, Jin-Kab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.369-374
    • /
    • 2016
  • Cooling towers have been installed on rooftops or outside of buildings and widely applied to control the indoor temperature in residential areas and buildings. However, the noise and vibration resulting from their operation may cause problems in adjacent buildings. The purpose of this study is to measure the noise and vibration of an industrial cooling tower located adjacent to industrial plants and to investigate its influence on the surroundings according to an authorized evaluation standard. Further, in order to measure the effect of the vibration of the tower on the precision equipment inside the plant, an experiment is conducted to measure the vibration of the ground in the plant and the targeted precision equipment. The measurement results indicate that the noise in the cooling tower is 4 to 9 dB(A) higher than the maximum level defined in the standard of 68dB(A). The effect of the vibration of the tower on the precision equipment is comparatively minimal, because that in the supporting frame of the building is weaker than that on the floor where the precision equipment is located. The vibration of the floor on.

A Measurement of Target Displacement by Using GB-SAR Interferometry and Atmospheric Correction (GB-SAR의 간섭기법을 통한 물체의 변위 측정 및 대기보정)

  • Lee, Jae-Hee;Lee, Hoon-Yol;Cho, Seong-Jun;Sung, Nak-Hoon;Kim, Jung-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.25-28
    • /
    • 2008
  • 본 논문에서는 GB-SAR의 간섭기법을 이용하여 물체의 변위 측정에 대한 정밀도를 조사하였으며, 또한 대기보정을 거친 후 정밀도의 변화에 대해서 확인하였다. GB-SAR 시스템에서 안테나는 중심주파수 5.3 GHz, 밴드 폭 600 MHz인 C밴드 안테나를 사용하였고, 신호의 증폭을 위해 마이크로파 앰프를, 다편파 측정 및 분석을 위하여 스위치를 장착하였다. 레일의 총 길이는 5 m, 이동간격은 5 cm, 최대 관측 거리는 약 200 m이다. 변위 측정에 사용된 이동산란체는 trihedral corner reflector로서, 시스템 전방 약 160 m에 위치하며 시스템 방향으로 1 mm에서 40 mm 전진시켰다. 이동산란체의 실제 변위와 GB-SAR 시스템의 위상변화로 관측된 변위의 상관계수는 편파에 따라 0.9995에서 0.9996으로 나타났다. 마이크로파의 전파과정에서 거리와 습도에 따른 지연 효과를 고려하기 위하여 대기보정식을 구하였으며, 이를 이동산란체의 위상에 적용한 결과 상관계수는 0.9997에서 0.9999의 값을 나타냈고 40 mm 이동시 오차가 1 mm 이내를 나타냄으로서 대기보정을 통한 결과가 더 높은 정밀도를 나타냄을 확인하였다.

  • PDF