• Title/Summary/Keyword: 측정 기반 자동화

Search Result 174, Processing Time 0.022 seconds

Development of robot calibration method based on 3D laser scanning system for Off-Line Programming (오프라인 프로그래밍을 위한 3차원 레이저 스캐닝 시스템 기반의 로봇 캘리브레이션 방법 개발)

  • Kim, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.16-22
    • /
    • 2019
  • Off-line programming and robot calibration through simulation are essential when setting up a robot in a robot automation production line. In this study, we developed a new robot calibration method to match the CAD data of the production line with the measurement data on the site using 3D scanner. The proposed method calibrates the robot using 3D point cloud data through Iterative Closest Point algorithm. Registration is performed in three steps. First, vertices connected by three planes are extracted from CAD data as feature points for registration. Three planes are reconstructed from the scan point data located around the extracted feature points to generate corresponding feature points. Finally, the transformation matrix is calculated by minimizing the distance between the feature points extracted through the ICP algorithm. As a result of applying the software to the automobile welding robot installation, the proposed method can calibrate the required accuracy to within 1.5mm and effectively shorten the set-up time, which took 5 hours per robot unit, to within 40 minutes. By using the developed system, it is possible to shorten the OLP working time of the car body assembly line, shorten the precision teaching time of the robot, improve the quality of the produced product and minimize the defect rate.

Development of a Building Safety Grade Calculation DNN Model based on Exterior Inspection Status Evaluation Data (건축물 안전등급 산출을 위한 외관 조사 상태 평가 데이터 기반 DNN 모델 구축)

  • Lee, Jae-Min;Kim, Sangyong;Kim, Seungho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.665-676
    • /
    • 2021
  • As the number of deteriorated buildings increases, the importance of safety diagnosis and maintenance of buildings has been rising. Existing visual investigations and building safety diagnosis objectivity and reliability are poor due to their reliance on the subjective judgment of the examiner. Therefore, this study presented the limitations of the previously conducted appearance investigation and proposed 3D Point Cloud data to increase the accuracy of existing detailed inspection data. In addition, this study conducted a calculation of an objective building safety grade using a Deep-Neural Network(DNN) structure. The DNN structure is generated using the existing detailed inspection data and precise safety diagnosis data, and the safety grade is calculated after applying the state evaluation data obtained using a 3D Point Cloud model. This proposed process was applied to 10 deteriorated buildings through the case study, and achieved a time reduction of about 50% compared to a conventional manual safety diagnosis based on the same building area. Subsequently, in this study, the accuracy of the safety grade calculation process was verified by comparing the safety grade result value with the existing value, and a DNN with a high accuracy of about 90% was constructed. This is expected to improve economic feasibility in the future by increasing the reliability of calculated safety ratings of old buildings, saving money and time compared to existing technologies.

Measuring the Public Service Quality Using Process Mining: Focusing on N City's Building Licensing Complaint Service (프로세스 마이닝을 이용한 공공서비스의 품질 측정: N시의 건축 인허가 민원 서비스를 중심으로)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.35-52
    • /
    • 2019
  • As public services are provided in various forms, including e-government, the level of public demand for public service quality is increasing. Although continuous measurement and improvement of the quality of public services is needed to improve the quality of public services, traditional surveys are costly and time-consuming and have limitations. Therefore, there is a need for an analytical technique that can measure the quality of public services quickly and accurately at any time based on the data generated from public services. In this study, we analyzed the quality of public services based on data using process mining techniques for civil licensing services in N city. It is because the N city's building license complaint service can secure data necessary for analysis and can be spread to other institutions through public service quality management. This study conducted process mining on a total of 3678 building license complaint services in N city for two years from January 2014, and identified process maps and departments with high frequency and long processing time. According to the analysis results, there was a case where a department was crowded or relatively few at a certain point in time. In addition, there was a reasonable doubt that the increase in the number of complaints would increase the time required to complete the complaints. According to the analysis results, the time required to complete the complaint was varied from the same day to a year and 146 days. The cumulative frequency of the top four departments of the Sewage Treatment Division, the Waterworks Division, the Urban Design Division, and the Green Growth Division exceeded 50% and the cumulative frequency of the top nine departments exceeded 70%. Higher departments were limited and there was a great deal of unbalanced load among departments. Most complaint services have a variety of different patterns of processes. Research shows that the number of 'complementary' decisions has the greatest impact on the length of a complaint. This is interpreted as a lengthy period until the completion of the entire complaint is required because the 'complement' decision requires a physical period in which the complainant supplements and submits the documents again. In order to solve these problems, it is possible to drastically reduce the overall processing time of the complaints by preparing thoroughly before the filing of the complaints or in the preparation of the complaints, or the 'complementary' decision of other complaints. By clarifying and disclosing the cause and solution of one of the important data in the system, it helps the complainant to prepare in advance and convinces that the documents prepared by the public information will be passed. The transparency of complaints can be sufficiently predictable. Documents prepared by pre-disclosed information are likely to be processed without problems, which not only shortens the processing period but also improves work efficiency by eliminating the need for renegotiation or multiple tasks from the point of view of the processor. The results of this study can be used to find departments with high burdens of civil complaints at certain points of time and to flexibly manage the workforce allocation between departments. In addition, as a result of analyzing the pattern of the departments participating in the consultation by the characteristics of the complaints, it is possible to use it for automation or recommendation when requesting the consultation department. In addition, by using various data generated during the complaint process and using machine learning techniques, the pattern of the complaint process can be found. It can be used for automation / intelligence of civil complaint processing by making this algorithm and applying it to the system. This study is expected to be used to suggest future public service quality improvement through process mining analysis on civil service.

Quality Control of Agro-meteorological Data Measured at Suwon Weather Station of Korea Meteorological Administration (기상청 수원기상대 농업기상 관측요소의 품질관리)

  • Oh, Gyu-Lim;Lee, Seung-Jae;Choi, Byoung-Choel;Kim, Joon;Kim, Kyu-Rang;Choi, Sung-Won;Lee, Byong-Lyol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.25-34
    • /
    • 2015
  • In this research, we applied a procedure of quality control (QC) to the agro-meteorological data measured at the Suwon weather station of Korea Meteorological Administration (KMA). The QC was conducted through six steps based on the KMA Real-time Quality control system for Meteorological Observation Data (RQMOD) and four steps based on the International Soil Moisture Network (ISMN) QC modules. In addition, we set up our own empirical method to remove erroneous data which could not be filtered by the RQMOD and ISMN methods. After all these QC procedures, a well-refined agro-meteorological dataset was complied at both air and soil temperatures. Our research suggests that soil moisture requires more detailed and reliable grounds to remove doubtful data, especially in winter with its abnormal variations. The raw data and the data after QC are now available at the NCAM website (http://ncam.kr/page/req/agri_weather.php).