• 제목/요약/키워드: 측정조건

Search Result 9,324, Processing Time 0.039 seconds

The Monitoring on Plasticizers and Heavy Metals in Teabags (침출용 티백 포장재의 안전성에 관한 연구)

  • Eom, Mi-Ok;Kwak, In-Shin;Kang, Kil-Jin;Jeon, Dae-Hoon;Kim, Hyung-Il;Sung, Jun-Hyun;Choi, Hee-Jung;Lee, Young-Ja
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.4
    • /
    • pp.231-237
    • /
    • 2006
  • Nowadays the teabag is worldwide used for various products including green tea, tea, coffee, etc. since it is convenient for use. In case of outer packaging printed, however, there is a possibility that the plasticizers which is used for improvement in adhesiveness of printing ink may shift to inner tea bag. In this study, in order to monitor residual levels of plasticizers in teabags, we have established the simultaneous analysis method of 9 phthalates and 7 adipates plasticizers using gas chromatography (GC). These compounds were also confirmed using gas chromatography-mass spectrometry (GC-MSD). The recoveries of plasticizers analyzed by GC ranged from 82.7% to 104.6% with coefficient of variation of $0.6\sim2.7%$ and the correlation coefficients of each plasticizer was $0.9991\sim0.9999$. Therefore this simultaneous analysis method was showed excellent reproducibility and linearity. And limit of detection (LOD) and limit of quantitation (LOQ) on individual plasticizer were $0.1\sim3.5\;ppm\;and\;0.3\sim11.5\;ppm$ respectively. When 143 commercial products of teabag were monitored, no plasticizers analysed were detected in filter of teabag products. The migration into $95^{\circ}C$ water as food was also examined and the 16 plasticizers are not detected. In addition we carried out analysis of heavy metals, lead (Pb), cadmium (Cd), arsenic (As) and aluminum (Al) in teabag filters using ICP/AES. $Trace\sim23{\mu}g$ Pb per teabag and $0.6\sim1718{\mu}g$ Al per teabag were detected in materials of samples and Cd and As are detected less than LOQ (0.05 ppm). The migration levels of Pb and Al from teabag filter to $95^{\circ}C$ water were upto $11.5{\mu}g\;and\;20.8{\mu}g$ per teabag, respectively and Cd and As were not detected in exudate water of all samples. Collectively, these results suggest that there is no safety concern from using teabag filter.

Study on the relationship between the potassium activity ratio of paddy soils and potassium uptake by rice plant (답토양(沓土壤)의 가리(加里) Activity ratio와 수도(水稻)의 가리(加里) 흡수(吸收) 특성(特性)에 관(關)한 연구)

  • Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.4
    • /
    • pp.223-233
    • /
    • 1976
  • The potassium equilibrium activity ratio ($AR^k_e$) and energies of exchange for replacement of ca+Mg by K ($E_k$) were measured for seven paddy soils to investigate their correlations with the exchangeable K (Kex) and uptake of K at different growth stages of rice plant. It was found that $AR^k_e$ had highly significant correlations at 1% level with uptake of K at maximum tillering, heading and harvesting stages, and also with Kex in soils at maximum tillering stage. The larger $AR^k_e$ of soils, the more uptake of K by rice plant. The fact indicates that uptake of K by the plant can be characterized in terms of $AR^k_e$ or energy of exchange of soils. In aspect of energy of exchange, higher uptake of K and yield of grain were observed from -2500 to -3000 calories per chemical equivalent, representing suitable balances between K and Ca+Mg in soils. Low uptake of K was observed at the energies of exchange below -3500 calories per chemical equivalent, which were prevalent in the ordinary acidic soils. From the correlations between energy of exchange and Kex, it can be concluded that at least 0.37 meq. of exchangeable K should be existed in 100g of dried acidic soil to keep suitable balances of K and Ca+Mg. The result shown that application of K adsorbed zeolite to paddy soils increased $AR^k_e$ and consequently brought about higher K uptake and grain yield. Therefore, a reasonable way recommended to get good balance of exchangeable K in the soil is applying 1.7 tonns of K adsorbed zeolite containing 60kg $K_2O$ per hectare.

  • PDF

Ecological Characteristics of Leading Shoot Elongation in the Plantation (I) (조림목(造林木) 신초생장(新稍生長)의 생태학적특성(生態學的特性)에 관(關)한 연구(硏究) (I))

  • Ma, Sang Kyu;Kuk, Ung Hum
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.37-43
    • /
    • 1980
  • This study have done to get the basical information that would be useful to make the ecological planting, selection of suitable species and weeding plan by the relation between the leading shoot elongation of several species and the climatic factors in the plantation. Sampling measurement have been done in the trial forest of Korean German Forest Management Project located in Joil-ri, Samnam-myeon and Ichcon-ri, Sangbug-myeon, Ulju-gun. The former is in lowland at 100m latidude and the latter is in highland of 600 m latitude. The elongation of leading shoot has been measured in the plantation with 10 days interval from the beginning of March in 1979 and the climatic datas has gotten in the weather station closed to the plantation. 1. The change of air temperature and rainfall in each measuring site is like Fig 1. and 2. The similar temperature in 600 m high latitude is coming about 10 days latter than 100 m latitude. 2. Genus pine as Pinus thunbergii, P. rigida, P. rigitaeda. P. koraiensis and P. taeda begin their leading shoot growth during March and air temperature in that time is around $6^{\circ}C$. In highland their beginning of leading shoot elongation has been found out 10 days latter than lowland. However Abies, Larix and Picea has shown to open their leading shoot during May, 40 days late in comparing with genus pine, and then temperature is making around $15^{\circ}C$. But Cryptomeria, Chamaecyparis and Cedrus deodora has shown their leading shoot opening in March in lowland and May in high land. The reason of late opening, specially in highland, seems to be the influence of winter frost. 3. Most of leading shoot elongation of genus pine has finished during the end 10 days of April and May under range of air temperate $10^{\circ}C$ and $20^{\circ}C$ and other species has finished most of their elongation during the end 10 days of May and June with air temperature range of $18^{\circ}C$ to $20^{\circ}C$. So the suitable season of weeding works show to genus pine in May and other species in June. 4. The leading shoot growth of genus pine has started earlier and closed earlier too than other species and, when over than $20^{\circ}C$ air temperature, their growth is decreasing quickly. Pices abies as well show to be decreased suddenly in over than $20^{\circ}C$ temperature. Other species show the similar trend when over than $22^{\circ}C$. This reason is considered as high temperature of summer season. 5. Annual elongated days of leading shoot of Picea abies is 50 days, Abies hollophylla 70 days, and more than 85 percentage of shoot growth of Pinus koraiensis and Larix leptolepsis are growing during 70 dys as well. The shoot growing days of Chamaecyparis, P. rigida, P. rigitaeda, P. taeda and P. shunbergii show longer period as over than 120 days. 6. The shoot elongation times per year of Abies and Picea has closed as one times and Genus pine is continuring their elongation more than two times. But Cryptomeria, Chamaecyparis, Cedrus deodora and Larix show one or two times elongation depending on the measuring site. The reason of continuring elongation more than than two times seems to be influenced by the temperature in summer season except the genetical reason. 7. Depending on the above results, as the high temperature in summer season could give the influence to grow the leading shoot in the plantation, this would be the considering point on the ecological planting and selection of the suitable species to the slope aspect. The elongation pattern by the season show to be the considering point too to decide the the weeding and fertilizer dressing time by the species.

  • PDF

Radioimmunoassay Reagent Survey and Evaluation (검사별 radioimmunoassay시약 조사 및 비교실험)

  • Kim, Ji-Na;An, Jae-seok;Jeon, Young-woo;Yoon, Sang-hyuk;Kim, Yoon-cheol
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.1
    • /
    • pp.34-40
    • /
    • 2021
  • Purpose If a new test is introduced or reagents are changed in the laboratory of a medical institution, the characteristics of the test should be analyzed according to the procedure and the assessment of reagents should be made. However, several necessary conditions must be met to perform all required comparative evaluations, first enough samples should be prepared for each test, and secondly, various reagents applicable to the comparative evaluations must be supplied. Even if enough comparative evaluations have been done, there is a limit to the fact that the data variation for the new reagent represents the overall patient data variation, The fact puts a burden on the laboratory to the change the reagent. Due to these various difficulties, reagent changes in the laboratory are limited. In order to introduce a competitive bid, the institute conducted a full investigation of Radioimmunoassay(RIA) reagents for each test and established the range of reagents available in the laboratory through comparative evaluations. We wanted to share this process. Materials and Methods There are 20 items of tests conducted in our laboratory except for consignment tests. For each test, RIA reagents that can be used were fully investigated with the reference to external quality control report. and the manuals for each reagent were obtained. Each reagent was checked for the manual to check the test method, Incubation time, sample volume needed for the test. After that, the primary selection was made according to whether it was available in this laboratory. The primary selected reagents were supplied with 2kits based on 100tests, and the data correlation test, sensitivity measurement, recovery rate measurement, and dilution test were conducted. The secondary selection was performed according to the results of the comparative evaluation. The reagents that passed the primary and secondary selections were submitted to the competitive bidding list. In the case of reagent is designated as a singular, we submitted a explanatory statement with the data obtained during the primary and secondary selection processes. Results Excluded from the primary selection was the case where TAT was expected to be delayed at the moment, and it was impossible to apply to our equipment due to the large volume of reagents used during the test. In the primary selection, there were five items which only one reagent was available.(squamous cell carcinoma Ag(SCC Ag), β-human chorionic gonadotropin(β-HCG), vitamin B12, folate, free testosterone), two reagents were available(CA19-9, CA125, CA72-4, ferritin, thyroglobulin antibody(TG Ab), microsomal antibody(Mic Ab), thyroid stimulating hormone-receptor-antibody(TSH-R-Ab), calcitonin), three reagents were available (triiodothyronine(T3), Tree T3, Free T4, TSH, intact parathyroid hormone(intact PTH)) and four reagents were available are carcinoembryonic antigen(CEA), TG. In the secondary selection, there were eight items which only one reagent was available.(ferritin, TG, CA19-9, SCC, β-HCG, vitaminB12, folate, free testosterone), two reagents were available(TG Ab, Mic Ab, TSH-R-Ab, CA125, CA72-4, intact PTH, calcitonin), three reagents were available(T3, Tree T3, Free T4, TSH, CEA). Reasons excluded from the secondary selection were the lack of reagent supply for comparative evaluations, the problems with data reproducibility, and the inability to accept data variations. The most problematic part of comparative evaluations was sample collection. It didn't matter if the number of samples requested was large and the capacity needed for the test was small. It was difficult to collect various concentration samples in the case of a small number of tests(100 cases per month or less), and it was difficult to conduct a recovery rate test in the case of a relatively large volume of samples required for a single test(more than 100 uL). In addition, the lack of dilution solution or standard zero material for sensitivity measurement or dilution tests was one of the problems. Conclusion Comparative evaluation for changing test reagents require appropriate preparation time to collect diverse and sufficient samples. In addition, setting the total sample volume and reagent volume range required for comparative evaluations, depending on the sample volume and reagent volume required for one test, will reduce the burden of sample collection and planning for each comparative evaluation.