• Title/Summary/Keyword: 측면선량

Search Result 172, Processing Time 0.028 seconds

Development and Evaluation of Quality Assurance Worksheet for the Radiation Treatment Planning System (방사선치료계획 시스템의 정도관리 절차서 개발 및 유용성 평가)

  • Cho Kwang Hwan;Choi Jinho;Shin Dong Oh;Kwon Soo Il;Choi Doo Ho;Kim Yong Ho;Lee Sang Hoon
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.186-191
    • /
    • 2004
  • The periodic Quality Assurance (QA) of each radiation treatment related equipments is important one, but quality assurance of the radiation treatment planning system (RTPS) is still not sufficient rather than other related equipments in clinics. Therefore, this study will present and test the periodic QA program to compare, evaluation the efficiency of the treatment planning systems. This QA program is divided to terms for the input, output devices and dosimetric data and categorized to the weekly, monthly, yearly and non-periodically with respect to the job time, frequency of error, priority of importance. CT images of the water equivalent solid phantom with a heterogeneity condition are input into the RTPS to proceed the test. The actual measurement data are obtained by using the ion chamber for the 6 MV, 10 MV photon beam, then compared a calculation data with a measurement data to evaluate the accuracy of the RTPS. Most of results for the accuracy of geometry and beam data are agreed within the error criteria which is recommended from the various advanced country and related societies. This result can be applied to the periodic QA program to improve the treatment outcome as a proper model in Korea and used to evaluate the accuracy of the RTPS.

  • PDF

Research on Image Quality and Effective dose by Exposure Index Variation (Exposure Index변화에 따른 Image Quality와 Effective dose에 대한 연구: a Monte Carlo Simulation Study)

  • Kim, Hyun Soo;Jeong, Jae Ho;Lee, Jong Woong
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Comparing with film-screen system, flat-panel detector has extensive dynamic range. Focusing flat-panel detector, whole body human phantom PBU-50 (Kyoto, kagaku, Japan) was used to perform comparative study of the estimate of image quality and exposure dose. the exposure condition was 81kV and 20mAs, which is used for Abdomen supine exam in clinical area. As a result of the kV change of the interpreted medical image which has over 30dB of PSNR value, the value of DAP shows the difference of 19.6 times. Moreover, the result of comparing kV change with effective dose of ICRP 103 shows that stochastic effect was increased by over exposure. Therefore, it is significantly necessary that digital radiation technical chart will be used to obtain high quality image and make the standard of dose by educating radio-technologist continually.

Development of the EGS4 Control Code to Calculate the Dose Distributions in a Strong Magnetic Field (자기장이 인가된 물팬텀 속의 전자선 선량분포 계산을 위한 EGS4 제어코드의 개발과 응용)

  • 정동혁;오영기;신교철;김진기;김기환;김정기;이강규;문성록;김성규
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • In this work we developed a EGS4 control code to calculate the dose distributions for high energy electron beams in water phantom applied longitudinal magnetic field. We reviewed the electron's motion in magnetic field and delivered equations for direction changs of the electron by the external magnetic field. The mathematical results are inserted into the EGS4 code system to account for the presence of external magnetic fields in phantom. The electron pencil beam paths of 6 MeV in water phantom are calculated for magnetic fields of 1-3 T and the dose distributions for a field of 1.0 cm in diameter are calculated for magnetic fields of 0.6-1 T using the code. From the results of path calculations we found that the lateral ranges of the electrons are reduced in the magnetic field of 3 T. For a field of 1 cm diameter and a magnetic field of 1 T, the small dose enhancement near the range of the electrons on the depth dose and the penumbra reduction of 0.15 cm on the beam profile are observed. We discussed and evaluated the results from the theoretical concepts.

  • PDF

The Usability Evaluation Half Beam Radiation Treatment Technique on the Esophageal Cancer (식도암 환자에서의 Half Beam 치료법의 유용성 평가)

  • Park, Hochoon;Kim, Youngjae;Jang, Seongjoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.287-293
    • /
    • 2015
  • Because of esophageal cancer has the long length of the lesion and also inhomogeneous in depth. So, the radiation dose distribution was inhomogeneous in radiation therapy. To overcomes the dose distribution uniformity using half beam method. Patient's CT image was used radiation treatment planning. We used two planning methods that one is the using normal beam and another is using half beam. Than comparing the two radiotherapy planning using target coverage, dose volume histogram, conformity index, homogeneity index and normal tissues - heart, spinal cord, lung -. In results, Treatment planning using half beam is little more than normal beam in target coverage, dose volume histogram, conformity index, homogeneity index and normal tissues covering. However, If the patient is not correct position patients may arise a side effect. Thus, the using in Half beam involving the geometrically exact under lung cancer is considered to advantage.

A Dosimetric Comparision of IMRT and VMAT in Synchronous Bilateral Breast Cancer (양측성 유방암의 세기조절방사선치료(IMRT)와 부피적조절회전방사선치료(VMAT)의 비교연구)

  • Kim, Sung-Jin;Youn, Seon-Min;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.284-289
    • /
    • 2013
  • A study was performed comparing dosimetric characteristics of volumetric modulated arc and intensity modulated radiatio therapy on patients with bilateral breast cancer. For 5 patients, 3 plans were made for each patient; IMRT beams 8 and 12 of the beam intensity modulated radiation therapy, volumetric modulated arc therapy plan. The average PTVs volumes and $D_{98}$ for 12-IMRT were $51.04{\pm}0.57$ Gy (right), $50.80{\pm}1.07$ Gy (left), $42.94{\pm}16.16$ Gy (right), $42.56{\pm}2.09$ Gy (left). HI ($D_5{\sim}D_{95}$) and $CI_{90,95}$, even 12-IMRT has shown excellent results. In OAR, 3 plans showed excellent results. But the lowest dose of 12-IMRT. 12-IMRT achieved similar PTV coverage and sparing of organs at risk than 8-IMRT and VMAT.

A Study on the Dose Reduction Method for Temporal Bone HRCT Scan (관자뼈 HRCT 스캔 시 선량감소 방법에 관한 연구)

  • Joon Yoon;Hyeon-Ju Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1041-1047
    • /
    • 2023
  • Temporal bone CT, which is a high-resolution CT, uses a high tube voltage and a thin section thickness, so the scan dose is higher than that of adjacent areas. Accordingly, we applied changes to the reconstruction algorithm among the test conditions to find an algorithm with excellent sensitivity to lesions while reducing the test dose, and investigated its significance and the possibility of providing basic clinical data. As a result, when the tube voltage was lowered to 100 kVp and applied, the dose was reduced by about 35.6%, and when the definition algorithm was applied to the raw data acquired at 100 kVp, the SNR and CNR were excellent, and a statistically significant difference was shown when compared to other algorithms(p<0.05). And as a result of comparing structural similarity, the SSIM index was analyzed as 0.776, 0.813, and 0.741 for each ROI. Therefore, we believe that applying algorithm changes to temporal bone CT scans can partially reduce the dose generated from CT scans and are very meaningful in terms of basic clinical data.

Scalp Dose Evaluation According Radiation Therapy Technique of Whole Brain Radiation Therapy (전뇌 방사선치료 시 치료방법에 따른 두피선량평가)

  • Jang, Joon-Yung;Park, Soo-Yun;Kim, Jong-Sik;Choi, Byeong-Gi;Song, Gi-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.2
    • /
    • pp.103-108
    • /
    • 2011
  • Purpose: Opposing portal irradiation with helmet field shape that has been given to a patient with brain metastasis can cause excess dose in patient's scalp, resulting in hair loss. For this reason, this study is to quantitatively analyze scalp dose for effective prevention of hair loss by comparing opposing portal irradiation with scalp-shielding shape and tomotherapy designed to protect patient's scalp with conventional radiation therapy. Materials and Methods: Scalp dose was measured by using three therapies (HELMET, MLC, TOMO) after five thermo-luminescence dosimeters were positioned along center line of frontal lobe by using RANDO Phantom. Scalp dose and change in dose distribution were compared and analyzed with DVH after radiation therapy plan was made by using Radiation Treatment Planning System (Pinnacle3, Philips Medical System, USA) and 6 MV X-ray (Clinac 6EX, VARIAN, USA). Results: When surface dose of scalp by using thermo-luminescence dosimeters was measured, it was revealed that scalp dose decreased by average 87.44% at each point in MLC technique and that scalp dose decreased by average 88.03% at each point in TOMO compared with HELMET field therapy. In addition, when percentage of volume (V95%, V100%, V105% of prescribed dose) was calculated by using Dose Volume Histogram (DVH) in order to evaluate the existence or nonexistence of hotspot in scalp as to three therapies (HELMET, MLC, TOMO), it was revealed that MLC technique and TOMO plan had good dose coverage and did not have hot spot. Conclusion: Reducing hair loss of a patient who receives whole brain radiotherapy treatment can make a contribution to improve life quality of the patient. It is expected that making good use of opposing portal irradiation with scalp-shielding shape and tomotherapy to protect scalp of a patient based on this study will reduce hair loss of a patient.

  • PDF

Quantitative Evaluation of Image Quality using Automatic Exposure Control & Sensitivity in the Digital Chest Image (디지털 흉부영상에서 자동노출제어 및 감도변화를 이용한 영상품질의 정량적인 평가)

  • Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Dong-Hyun;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.275-283
    • /
    • 2013
  • The patient radiation dose is different depending on selection of Ion chamber when taking Chest PA which using AEC. In this paper, we studied acquiring the best diagnostic images according to selection of Ion chamber on AEC mode as well as minimizing patient radiation dose. Experimental methods were selection of Ion chamber and change of sensitivity under the same conditions as Chest PA projection. At AEC mode, two upper ion chambers sensors and one lower ion chamber sensor were divided into 7 cases according to selection of on/off. after measuring five times respectively, we obtained average value and calculated exposure dose. Image assessment was done with measured Modulation Transfer Function, Peak Signal to Noise Ratio, Root Mean Square, Signal to Noise Ratio, Contrast to Noise Ratio, Mean to Standard deviation Ratio respectively. In exposure assessment results, selection of two upper chambers was the lowest. In resolution assessment results, image of two upper chambers had the second high spatial frequency at sensitivity at 625(High) was 1.343 lp/mm. RMS value of image selecting two upper chambers was low secondly. SNR, CNR, MSR were the high value secondly. As the sensitivity was increased, radiation dose was decreased but better image could be obtained on image quality. In order to obtain the best medical images while minimizing the dose, usage of two upper ion chambers is considered to be clinically useful at sensitivity 625(High).

Comparison of the Measured Radiation Dose-rate by the Ionization Chamber and GM(Geiger-Müller) Counter After Radioactive Iodine Therapy in Differentiated Thyroid Cancer Patients (분화성 갑상선암환자의 방사성 요오드 치료시 전리함과 Geiger-Muller계수관에서 방사선량률 측정값 비교)

  • Park, Kwang-hun;Kim, Kgu-hwan
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.565-570
    • /
    • 2016
  • Radioactive iodine($^{131}I$) treatment reduces recurrence and increases survival in patients with differentiated thyroid cancer. However, it is important in terms of radiation safety management to measure the radiation dose rate generated from the patient because the radiation emitted from the patient may cause the exposure. Research methods, it measured radiation dose-rate according to the elapsed time from 1 m from the upper abdomen of the patient by intake of radioactive iodine. Directly comparing the changes over time, high dose rate sensitivity and efficiency is statistically significant, and higher chamber than GM counter(p<0.05). Low dose rate sensitivity and efficiency in the chamber had lower levels than gm counter, but not statistically significant(p>0.05). In this study confirmed the characteristics of calibrated ionization chamber and GM counter according to the radiation intensity during high-dose radioactive iodine therapy by measuring the accurate and rapid radiation dose rate to the patient explains, discharged patients will be reduced to worry about radiation hazard of family and others person.

Feasibility Study of the microDiamond Detector for Measurement of Small Field Photon Beam (광자선 소조사면 선량측정을 위한 microDiamond 검출기의 유용성 고찰)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Ji, Young Hoon;Kim, Kum Bae;Lee, Sang Hoon;Min, Chul Kee;Jo, Gwang Hwan;Shin, Dong Oh;Kim, Seong Hoon;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.255-263
    • /
    • 2014
  • The dosimetry of very small fields is challenging for several reasons including a lack of lateral electronic equilibrium, large dose gradients, and the size of detector in respect to the field size. The objective of this work was to evaluate the suitability of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the small field dosimetry in cyberknife photon beams of 6 different collimator size (from 5 mm to 30 mm). Measurements included dose linearity, dose rate dependence, output factors (OF), percentage depth doses (PDD) and off center ratio (OCR). The results were compared to those of pinpoint ionization chamber, diamond detector, microLion liquid Ionization chamber and diode detector. The dose linearity results for the microDiamond detector showed good linearly proportional to dose. The microDiamond detector showed little dose rate dependency throughout the range of 100~600 MU/min, while microLion liquid Ionization chamber showed a significant discrepancy of approximately 5.8%. The OF measured with microDiamond detector agreed within 3.8% with those measured with diode. PDD curves measured with silicon diode and diamond detector agreed well for all the field sizes. In particular, slightly sharper penumbras are obtained by the microDiamond detector, indicating a good spatial resolution. The results obtained confirm that the new PTW 60019 microDiamond detector is suitable candidate for application in small radiation fields dosimetry.