• Title/Summary/Keyword: 취약면적

Search Result 225, Processing Time 0.028 seconds

The Effects of Droughts and Public Investments in Irrigation Facilities on Rice Yields in Korea (가뭄과 생산기반 정비사업이 쌀 생산성에 미치는 영향)

  • Sung, Jae-hoon;Chae, Kwang-seok;KIM, Dae-Eui
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.293-303
    • /
    • 2017
  • The purpose of this study is to measure the effects of droughts and public investments in irrigation facilities on rice production. We estimated the effects of droughts and the fraction of irrigated paddy fields with irrigation facilities on rice yields through a panel regression model. The results showed that the effect of drought on rice yield was negative but modest. Also, we found that increases in the ratio of irrigated paddy fields to total paddy fields by 1% enhance rice yields by 0.025-0.035%. However, the ratio of irrigated paddy fields to total paddy fields has insignificant effects on reducing harmful droughts effects regardless of the conditions of irrigated paddy fields.

Application of SAD Curves in Assessing Climate-change Impacts on Spatio-temporal Characteristics of Extreme Drought Events (극한가뭄의 시공간적 특성에 대한 기후변화의 영향을 평가하기 위한 SAD 곡선의 적용)

  • Kim, Hosung;Park, Jinhyeog;Yoon, Jaeyoung;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.561-569
    • /
    • 2010
  • In this study, the impact of climate change on extreme drought events is investigated by comparing drought severity-area-duration curves under present and future climate. The depth-area-duration analysis for characterizing an extreme precipitation event provides a basis for analysing drought events when storm depth is replaced by an appropriate measure of drought severity. In our climate-change impact experiments, the future monthly precipitation time series is based on a KMA regional climate model which has a $27km{\times}27km$ spatial resolution, and the drought severity is computed using the standardized precipitation index. As a result, agricultural drought risk is likely to increase especially in short duration, while hydrologic drought risk will greatly increase in all durations. Such results indicate that a climate change vulnerability assessment for present water resources supply system is urgent.

A Study on Water Surface Detection Algorithm using Sentinel-1 Satellite Imagery (Sentinel-1 위성영상을 이용한 수표면 면적 추정 알고리즘에 관한 연구)

  • Lee, Dalgeun;Cheon, Eun Ji;Yun, Hyewon;Lee, Mi Hee
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.809-818
    • /
    • 2019
  • The Republic of Korea is very vulnerable to damage from storm and flood due to the rainfall phenomenon in summer and the topography of the narrow peninsula. The damage is recently getting worse because of the concentration rainfall. The accurate damage information production and analysis is required to prepare for future disaster. In this study, we analyzed the water surface area changes of Byeokjeong, Sajeom, Subu and Boryeong using Sentinel-1 satellite imagery. The surface area of the Sentinel-1 satellite, taken from May 2015 to August 2019, was preprocessed using RTC and image binarization using Otsu. The water surface area of reservoir was compared with the storage capacity from WAMIS and RIMS. As a result, Subu and Boryeong showed strong correlations of 0.850 and 0.941, respectively, and Byeokjeong and Sajeom showed the normal correlation of 0.651 and 0.657. Thus, SAR satellite imagery can be used to objective data as disaster management.

A study of Assessment for Internal Inundation Vulnerability in Urban Area using SWMM (SWMM을 이용한 도시지역 내수침수 취약성 평가)

  • Shon, Tae-Seok;Kang, Dong-Ho;Jang, Jong-Kyung;Shin, Hyun-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.105-117
    • /
    • 2010
  • The topographical depressions in urban areas, the lack in drainage capability, sewage backward flow, road drainage, etc. cause internal inundation, and the increase in rainfall resulting from recent climate change, the rapid urbanization accompanied by economic development and population growth, and the increase in an impervious area in urban areas deteriorate the risk of internal inundation in the urban areas. In this study, the vulnerability of internal inundation in urban areas is analyzed and SWMM model is applied into Oncheoncheon watershed, which represents urban river of Busan, as a target basin. Based on the results, the representative storm sewers in individual sub-catchments is selected and the risk of vulnerability to internal inundation due to rainfall in urban streams is analyzed. In order to analyze the risk and vulnerability of internal inundation, capacity is applied as an index indicating the volume of a storm sewer in the SWMM model, and the risk of internal inundation is into 4 steps. For the analysis on the risk of internal inundation, simulation results by using a SMMM model are compared with the actual inundation areas resulting from localized heavy rain on July 7, 2009 at Busan and comparison results are analyzed to prove the validity of the designed model. Accordingly, probabilistic rainfall at Busan was input to the model for each frequency (10, 20, 50, 100 years) and duration (6, 12, 18, 24hr) at Busan. In this study, it suggests that the findings can be used to preliminarily alarm the possibility of internal inundation and selecting the vulnerable zones in urban areas.

An Estimation to Landslide Vulnerable Area of Rainfall Condition using GIS (GIS를 이용한 강우조건에 따른 산사태 취약지 평가)

  • Yang, In-Tae;Chun, Ki-Sun;Park, Jae-Kook;Lee, Sang-Yeun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.1 s.39
    • /
    • pp.39-46
    • /
    • 2007
  • Most areas in Kangwon Province are mountainous and vulnerable to landslide due to the rainy season in summer and the localized torrential downpour triggered by abnormal climate. In particular, the rainfall is one of direct reasons for landslide. In accordance with the analysis of the relevance between the landslide areas and the accumulated rainfall for four months, there are severe damages of landslide to the areas having more than 1,100 mm of rainfall during three(3) months. Further, it indicates that the more the accumulated rainfall is the greater the size of landslide. These analyses show that the rainfall causes the possible and potential landslide in the vulnerable areas. And also, it means that there exist strong possibilities of landslide even in the areas of lower vulnerability if the amount of rainfall is above certain standard level. Accordingly, in this study we stored the GIS database on the causes and factors of landslide in the southern parts of Kangwon province and conducted simulations on the change of distribution of vulnerable areas by varying the rainfall conditions and by using the evaluation data of landslide vulnerability. As such a result, we found that the landslide could potentially occur if the amount of rainfall is 200 mm and more.

  • PDF

Seismic Performance Evaluation and Retrofit of a 2-Story Steel Building Using a Fragility Contour Method (취약성 등고선을 이용한 비내진 2층 철골조 건축물에 대한 내진성능 평가와 보강)

  • Shin, Ji-Uk;Lee, Ki-Hak;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Based on the Korean Building Standard Law, a building less than 3-stories and $1000m^2$ in area is defined as a small-level building and, as a result, this type of building has been excluded from the requirement to comply with seismic design. In order to prevent the loss of life and property under earthquake loadings, the small-scale building should satisfy the seismic performance specified in the current code through a seismic retrofit. In this study, a seismic retrofit scheme of a Buckling-Restrained Knee Brace (BRKB) was developed for non-seismic 2-story steel buildings, including small-scale buildings, using a fragility contour method. In order to develop an effective retrofit scheme of the BRKB for the building, a total of 75 BRKB analytical models were used to achieve the desired performance levels and analyzed using the fragility contour method. The seismic performance of the retrofitted building was evaluated in terms of the weight of the developed BRKB systems. This study shows that the fragility contour method can be used for rapid evaluation and is an effective tool for structural engineers.

Evaluation of Non-point source Vulnerable Areas In West Nakdong River Watershed Using TOPSIS (TOPSIS를 이용한 서낙동강 유역 비점오염 취약지역 평가 연구)

  • KAL, Byung-Seok;PARK, Jae-Beom;KIM, Ye-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.26-39
    • /
    • 2021
  • This study investigated the characteristics of the watershed and pollutants in the Seonakdong River basin in the lower stream of the Nakdong River Water System, and evaluated the areas vulnerable to nonpoint pollution by subwatershed according to the TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution) method. The selection method consists of selection of evaluation factors, calculation of weights and selection of areas vulnerable to non-point pollution through evaluation factors and weights. The entropy method was used as the weight calculation method and TOPSIS, a multi-criteria decision making(MCDM) method was used as the evaluation method. Indicator data were collected as of 2018, and national pollution source survey data and national statistics were used. Most of the vulnerable watersheds were highly urbanized had a large number of residents and were evaluated as having a large land area among industrial facilities and site area rate. Through this study, it is necessary to approach a variety of weighting methodologies to assess the vulnerability of non-point pollution with high reliability, and scientific analysis of the factors that affect non-point pollution sources and consideration of the effects are necessary.

Improving Reliability of the Last Level Cache with Low Energy and Low Area Overhead (낮은 에너지 소모와 공간 오버헤드의 Last Level Cache 신뢰성 향상 기법)

  • Kim, Young-Ung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • Due to the technology scaling, more transistors can be placed on a cache memories of a processor. However, processors become more vulnerable to the soft error because of the highly integrated transistors, and consequently, the reliability of the cache memory must consider seriously at the design space level. In this paper, we propose the reliability improving technique which can be achieved with low energy and low area overheads. The simulation experiments of the proposed scheme shows over 95.4% of protection rate against the soft error with only 0.26% of performance degradations. Also, It requires only 2.96% of extra energy consumption.

Monitoring of the Drought in the Upstream Area of Soyang River, Inje-Gun, Kangwon-do Using KOMPSAT-2/3 Satellite (KOMPSAT-2/3 위성을 활용한 강원도 인제군 소양강 상류지역의 가뭄 모니터링)

  • Park, Sung-Jae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1319-1327
    • /
    • 2018
  • Korea has a terrain vulnerable to drought due to the concentration of precipitation in summer and the large amount of groundwater discharge. Quantified drought indices are used to determine these droughts. Among these, drought index is mainly used for analysis of precipitation, and recently, researches have been conducted to monitor drought using satellite images. In this study, we used the KOMPSAT-2/3 image to calculate the water surface area and compare with the drought index in order to monitor the drought in the Upper Soyang River. As a result, it was confirmed that the tendency of the water surface area change and the trend of the drought index were similar in the satellite images. Future research could be used as a basis for judging drought.

A study on the application of hydrophone and CNN analysis for the calculation of bed load discharge (소류사량 산정을 위한 하이드로폰의 적용과 CNN 분석에 관한 연구)

  • Min Jin Jung;Kye Won Jun;Chang deok Jang;Sung Uk Kim;Ji Yeol Ryu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.135-135
    • /
    • 2023
  • 우리나라의 전 국토면적 중 약 63% 이상이 산지로 이루어져 있으며 이는 OECD국가 중 4위에 해당할 정도로 매우 높은 비율이다. 광활한 산지 면적의 효율적 이용을 위해 사면개발, 태양광 시설, 관광자원으로써의 활용 등이 이루어져 토양침식에 매우 취약해졌으며, 하천으로의 토사유입량이 증가하고 있다. 따라서 하천으로 유입된 유사량의 조사가 매우 중요하며, 유사량 중 입경이 큰 소류사량을 추정하기 위한 조사 장비 중 간접적 방법인 하이드로폰에 관한 국내·외 연구가 활발히 진행되고 있다. 본 연구에서는 기존 소류사량 추정 방법 중 추정식을 활용한 방법의 추정량이 많아질수록 정확도가 낮아지는 문제를 개선하기 위한 노력으로 인공신경망의 한 종류인 Convolutional Neural Networks(CNN)를 소류사량의 계측에 적용하기 위한 연구를 시도하였으며, 그 결과와 실제 소류사량의 정확도를 비교 및 분석하였다. 실험데이터를 획득하기 위하여 실내수로를 구축하였으며, Labview를 이용하여 소류사량에 대한 충돌음 이미지데이터를 취득한 후 학습을 진행한 결과, 검증데이터에 대한 정확도는 60%이상의 값으로 나타났다. 향후 추가적인 데이터 확보를 통해 정확도 향상을 위한 연구를 진행하고자 한다.

  • PDF