• Title/Summary/Keyword: 충돌 감지 시스템

Search Result 105, Processing Time 0.026 seconds

Non-manner parking enforcement system (비매너 주차 단속시스템)

  • Park, Sang-min;Son, Byung-Soo;Kim, Myung-sik;Choe, Byeong-Yun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.603-604
    • /
    • 2021
  • It is a enforcement system to prevent collisions caused by unmanageable parking that may occur in parking lots. There are handicapped people who can get up in parking lots, general vehicles parked in electric vehicle parking areas, and vehicles parked in two lanes. The vehicle above is detected and notified through the deep learning object recognition function. By using a picture or video of an unmanageable parking situation as learning data, the learning data is produced so that the situation can be recognized, and the situation is recognized to determine the presence or absence of unmanageable parking. The purpose is to reduce collisions between parking lot users by making the environment of the parking lot more comfortable.

  • PDF

The Study of Visualization for Moving Particles in the Water Using Artificial Neural Network (인공신경망을 이용한 수중 충돌입자의 가시화 연구)

  • Shin Bok-Suk;Je Sung-Kwan;Jin ChunLin;Kim Kwang-baek;Cho Jae-Hyun;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1732-1739
    • /
    • 2004
  • In this paper, we proposed a visualization system with ANN algorithm that traits the motion of particles that move colliding in the water, where we got a great deal of variable information and predicts the distribution of particles according to the flowing of water and the pattern of their precipitation. We adopted ART2 to detect sensitively the collision between particles in this visualzation. Various particles and their mutual collision influencing the force such as buoyancy force, gravitational force, and the pattern of precipitation are considered in this system. Flowing particles whose motion is changed with the environment can be visualized in the system presented here as they are in real water.

A Neighboring Area Search Algorithm for Terrain Following (Terrain Following을 위한 인접지역 탐색 알고리즘)

  • Kim, Jong-Hyuk;Choy, Yoon-Chul;Koh, Kyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.10
    • /
    • pp.499-506
    • /
    • 2001
  • Terrain Following means that a mobile object, such a user's avatar, must follow terrain, remaining in contact with the ground at all times in virtual environments. This makes a virtual environment have the effects of gravity. Terrain Following is often done using collision detection: however this is inefficient, because general collision detection solves a problem that is inherently more complex than merely determining terrain contact points. Many virtual environments avoid the expense by utilizing a flat terrain with a constant altitude everywhere. This makes a terrain following trivial, but lacks realism. This paper provides as algorithm and a data structure for a terrain following using a neighboring area search as a way to search neighboring polygons. Because this algorithm uses a pre-processing step that stores the terrain polygons for calculating, it results in reducing overheads to workstations that is used to construct and maintain a virtual environment. Consequently, workstation can be used to apply not only a terrain following but also other things.

  • PDF

A Method for Rear-side Vehicle Detection and Tracking with Vision System (카메라 기반의 측후방 차량 검출 및 추적 방법)

  • Baek, Seunghwan;Kim, Heungseob;Boo, Kwangsuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.233-241
    • /
    • 2014
  • This paper contributes to development of a new method for detecting rear-side vehicles and estimating the positions for blind spot region or providing the lane change information by using vision systems. Because the real image acquired during car driving has a lot of information including the target vehicle and background image as well as the noises such as lighting and shading, it is hard to extract only the target vehicle against the background image with satisfied robustness. In this paper, the target vehicle has been detected by repetitive image processing such as sobel and morphological operations and a Kalman filter has been also designed to cancel the background image and prevent the misreading of the target image. The proposed method can get faster image processing and more robustness rather than the previous researches. Various experiments were performed on the highway driving situations to evaluate the performance of the proposed algorithm.

Digital Marine Vessel Diagnosis System Based on Context Aware using Backpropagation Algorithm (역전파 신경망을 이용한 상황인식 기반 디지털 선박 진단 시스템)

  • Song, Byoung-Ho;Lee, Woo-Young;Lim, Moo-Seong;Lee, Yeonwoo;Jung, min-A;Lee, Seong-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.334-337
    • /
    • 2010
  • 디지털 선박 운행시 예기치 못한 상황에 의한 선박 내 화재나 충돌 등 긴급 상황 발생 시에 대형의 해난 사고가 발생할 수 있다. 이에 본 논문에서는 선박 상태를 자체 진단하여 모니터링하고 위험 분석을 통해 관리할 수 있는 시스템을 구현하고자 한다. 해양 디지털선박의 환경, 상황을 수집할 수 있는 무선 센서를 이용하여 수집된 환경 정보를 분석하는 시스템을 제안하였으며, 센싱된 데이터를 분석하기 위하여 역전파 신경망을 설계하였다. 300개의 데이터 집합을 사용하여 역전파 신경망을 실험한 결과 약 96%의 정확도를 가졌다. 제안된 시스템은 하드웨어 (UStar-2400 ISP, UStar-2400, Wireless sensors) 부분과 소프트웨어 부분(User Interface module)으로 구성되며 소프트웨어 부분은 HOST PC에 삽입된다. 그리고 시스템의 정확도를 개선하기 위하여 전방향 에러 정정 시스템(LDPC)을 구현하였고 진단된 결과는 CDMA 방식으로 전송하여 해양디지털선박 감지 모니터링 시스템을 구현했다.

A Location-based Highway Safety System using Smart Mobile Devices (스마트 모바일 장치를 이용한 위치기반 고속도로 안전시스템)

  • Lee, Jaehyun;Park, Sungjin;Yoo, Joon
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.389-397
    • /
    • 2016
  • In this paper, we propose a highway safety system that comprises a small number of central servers and smart mobile devices. To implement this system, we constructed a central server that collects GPS location information on cars, whose update messages are decreased via the car location estimation algorithm. The in-car mobile devices use the accelerometer sensors to detect hazardous situations; this information is updated to the central server that relays the information to the corresponding endangered cars via location-based unicast using LTE communication. To evaluate the proposed algorithm, we equipped a mobile device app on a real car and conducted real experiments in various environments such as city streets, rural areas, and highway roads. Furthermore, we conducted simulations to evaluate the propagation of danger information. Finally, we conducted simulated experiments to detect car collisions as well as exceptions, such as falling of the mobile device from the cradle.

Autonomous Wheelchair System Using Gaze Recognition (시선 인식을 이용한 자율 주행 휠체어 시스템)

  • Kim, Tae-Ui;Lee, Sang-Yoon;Kwon, Kyung-Su;Park, Se-Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.91-100
    • /
    • 2009
  • In this paper, we propose autonomous intelligent wheelchair system which recognize the commands using the gaze recognition and avoid the detected obstacles by sensing the distance through range sensors on the way to driving. The user's commands are recognized by the gaze recognizer which use a centroid of eye pupil and two reflection points extracted using a camera with infrared filter and two infrared LEDs. These are used to control the wheelchair through the user interface. Then wheelchair system detects the obstacles using 10 ultrasonic sensors and assists that it avoid collision with obstacles. The proposed intelligent wheelchair system consists of gaze recognizor, autonomous driving module, sensor control board and motor control board. The gaze recognizer cognize user's commands through user interface, then the wheelchair is controled by the motor control board using recognized commands. Thereafter obstacle information detected by ultrasonic sensors is transferred to the sensor control board, and this transferred to the autonomous driving module. In the autonomous driving module, the obstacles are detected. For generating commands to avoid these obstacles, there are transferred to the motor control board. The experimental results confirmed that the proposed system can improve the efficiency of obstacle avoidance and provide the convenient user interface to user.

Obstacle Avoidance of GNSS Based AGVs Using Avoidance Vector (회피 벡터를 이용한 위성항법 기반 AGV의 장애물 회피)

  • Kang, Woo-Yong;Lee, Eun-Sung;Chun, Se-Bum;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.535-542
    • /
    • 2011
  • The Global Navigation Satellite System(GNSS) is being utilized in numerous applications. The research for autonomous guided vehicles(AGVs) using precise positioning of GNSS is in progress. GNSS based AGVs is useful for setting driving path. This AGV system is more efficient than the previous one. Escipecially, the obstacle is positioned the driving path. Previcious AGVs which follow marker or wires laid out on the road have to stop the front of obstacle. But GNSS based AGVS can continuously drive using obstacle avoidance. In this paper, we developed collision avoidance system for GNSS based AGV using laser scanner and collision avoidance path setting algorithm. And we analyzed the developed system.

A Study on Improvement of Crash Discrimination Performance for Offset and Angular Crash Events Using Electronic X-Y 2-Axis Accelerometer (전자식 X-Y 이축 가속도 센서를 이용한 오프셋 및 경사 충돌에 대한 충돌 판별 성능 개선에 관한 연구)

  • 박서욱;전만철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.128-136
    • /
    • 2003
  • In today's design trend of vehicle structure, crush zone is fiequently reinforced by adding a box-shaped sub-frame in order to avoid an excessive deformation against a high-speed offset barrier such as EU Directive 96/97 EC, IIHS offset test. That kind of vehicle structure design results in a relatively monotonic crash pulse for airbag ECU(Electronic Control Unit) located at non-crush zone. As for an angular crash event, the measured crash signal using a single-axis accelerometer in a longitudinal direction is usually weaker than that of frontal barrier crash. Therefore, it is not so easy task to achieve a satisfactory crash discrimination performance for offset and angular crash events. In this paper, we introduce a new crash discrimination algorithm using an electronic X-Y 2-axis accelerometer in order to improve crash discrimination performance especially for those crash events. The proposed method uses a crash signal in lateral direction(Y-axis) as well as in longitudinal direction(X-axis). A crash severity measure obtained from Y-axis acceleration is used to improve the discrimination between fire and no-fire events. The result obtained by the proposed measure is logically ORed with an existing algorithm block using X-axis crash signal. Simulation and pulse injection test have been conducted to verify the performance of proposed algorithm by using real crash data of a 2,000cc passenger vehicle.

Detection of High-Velocity Impact Damage in Composite Laminates Using PVDF Sensor Signals (고분자 압전 필름 센서를 이용한 복합재 적층판의 고속 충격 손상 탐지)

  • Kim Jin-Won;Kim In-Gul
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.26-33
    • /
    • 2005
  • The mechanical properties of composite materials may severely degrade in the presence of damage. Especially, the high-velocity impact such as bird strike, a hailstorm, and a small piece of tire or stone during high taxing, can cause considerable damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single technique or any conventional methods. In this paper, the PVDF(polyvinylidene fluoride) film sensors were used for monitoring high-velocity impact damage initiation and propagation in composite laminates. The WT(wavelet transform) and STFT(short time Fourier transform) are used to decompose the sensor signals. A ultrasonic C-scan and a digital microscope are also used to examine the extent of the damage in each case. This research shows how various sensing techniques, PVDF sensor in particular, can be used to characterize high-velocity impact damage in advanced composite.